

Bordsteinerkennung und Höhenbestimmung in 3D LiDAR-Daten mittels eines mobilen Kartierungssystems

Oldenburger 3D-Tage 2024

Oldenburg, 31. Januar 2024 Simon Pfeil, Thomas Wiemann, Marcel Storch, **Isaak Ihorst**

Content

- Motivation
- Point Cloud Acquisition
- Related Work
- Methodology
- Experimental Setup
- Results
- Discussion
- Conclusion and Future Work

What is the issue?

Curbs ...

- separate the roadway from adjacent sidewalks
- directly affects accessibility and safety [Matthews et al. 2003, Sieger et al. 2008]
- different user groups with conflicting interests
- curb information is cruicial and could serve as data for barrier-free person navigation [Sobek & Miller, 2006, Kasemsuppakorn & Karimi 2009]

Research gap ...

- Iack of flexible mapping solution
- lack of curb (height) data

Point Cloud Acqusition – Sensor OS1-128

Data acquisition should be flexible, simple and accurate ...

- UAV needs flight planing and permits are required
- **TLS** has low frequeny and static position
- high frequency LiDAR mounted to a helmet to provide cost-effective mobile mapping

Figure 2: Mounted OS1-128 sensor

Feature	Value	Provision	Paper acture of
Channels	128	FTECISION	Range accuracy
	120	$0.3 - 1 \text{ [m]: } \pm 0.7 \text{ [cm]}$	± 3 [cm] for lambertian targets
Points per line	1024	$1 20 \; [m] + 10 \; [am]$	± 10 [am] for reflectors
Frequency	20 Hz	$1 - 20$ [m]: ± 1.0 [cm]	± 10 [cm] for reflectors
inequency		20 - 50 [m] ± 2 [cm]	
VFov	45 degree	50 [m]	
HFov	360 degree	$30 [m]: \pm 5 [cm]$	

Point Cloud Acqusition - Software

- Co-registration performed by HATSDF SLAM from autonomous robotics group (in ROS) [Eisoldt et al. 2022, Gaal 2022]
 - Initial estimate agents trajectory with TSDF
 - Post-registration using VGICP
- LiDAR data processing in Open3D and Python

(b) RIEGL TLS

Figure 3: Qualitative comparison

⁽c) HATSDF SLAM and OS1-128

Related Work

- Two decades of research
- Multi-stage algorithms or pipelines

Methodology

Concept ...

- Based on Belton and Bae's idea [Belton and Bae 2010]
- Differences in point density, accuracy and alignment of the coordinate system
- adapt and expand method using different techniques

Filter for ground and non-ground

Region growing and finding road region

Edge detection to find regions likely to contain curbs

Curb detection and height estimation

Methodology - Organization

- Primarily horizontal 2D relationship
- Point-based gridding to deal with 3D data in 2D space
- Access through sorted indexing

$$grid_num_x_i = \frac{x_i - mod(x_i, s)}{s}$$
$$grid_num_y_i = \frac{y_i - mod(y_i, s)}{s}$$
^(4.1)

Methodology – Ground segmentation

- Segment into ground and non-ground to get rid of obstacles
- Cellwise roughly selection of lower points
- Plane-based fitting using RANSAC with tight distance threshold

Methodology – Road detection

- Simple region growing algorithm compares the alignment of ground points with respect to adjacent cells
- **Criteria**: similar normal directions and nominally alignment of ground points
- Selecting biggest region

 $r_j = (\mu_j - \mu_i) \bullet \vec{n_i}$ $r_i = (\mu_i - \mu_j) \bullet \vec{n_j}$

Methodology – Road detection

- Label ground points in road cells as road
- All cells that are not marked as a road but are adjacent to at least one road cell are examined with respect to the properties of the ground points in adjacent road cells

Figure 13: Road points

Methodology – Candidate Points

- Regions that are likely to contain points sampled from a curb → road boundary
- Exact boundary → fewer disturbing obstacles → minimizes errors
- 3D boundary detection is difficult
 - transfer into binary image
 - canny edge detection
 - transfer back into 3D coordinates

(c) Best case selection

Figure 14: Candidate region selection

Figure 17: Candidate regions

Methodology – Curb detection and height estim.

- Find plane that bisect curb
- Select points along plane
- Project them into 2D cross section
- Not working with oblique cells
- Align cells that road points become parallel to world xy-plane
- Height measurement in 2D CS

Methodology – Curb detection and height estim.

- Since this procedure was developed for high-precision terrestrial lidar data in [2], the procedure seems to be too complex for the noisy lidar data and the application in this thesis
- Alternative: height estimation trough the average of the z-values of the street points and the average of the z-values of the sidewalk points inside each radius-buffer

Experimental Setup – Ground Truth Data

Data covers ...

- >3000m curb (flat to high, different profiles, conditions, textures)
- asphalt, paving-stones, cobblestone
- horizontal and inclined roads
- different road and sidewalk sizes
- Front gardens and vegetation adjacent to road
- Moving pedestrians or cars, static obstacles like parked cars

Ground Truth

- digitalized polylines in recorded point cloud
- height measurements in field

Figure 21: Field Instrument

Figure 22: Research area

Experimental Setup – Accuracy Assessment

Metrics for curb detection

Figure 23: Matching principle (modified, Heipke et al. 1997)

$$correctness = \frac{number \ of \ matched \ curbpoints}{number \ of \ curbpoints} = \frac{TP}{TP + FP}$$

 $correctness \in [0; 1]$

 $completeness = \frac{length \ of \ matched \ reference}{length \ of \ reference} = \frac{TP}{TP + FN}$ $completeness \in [0; 1]$

Metric for height estimation (categories)

- < 3 cm low</p>
- 3-7 cm medium
- 7-15 cm high

 $correctness \ of \ height = \frac{number \ of \ correct \ estimated \ height-categorie}{number \ of \ estimated \ height-categorie}$

Results – Curb detection

- Adjacent front garden, hedges, vegetation,
- Curved roads and dynamic pedestrians
- Different curb heights, profiles and unevenness

Figure 24: Results for proposed curb detection and height estimation

Results – Curb detection

- Uneven road surface
- Parked cars on sidewalk and on the road

low

medium

Figure 25: Results for proposed curb detection and height estimation

Results – Curb detection

	Completeness [%]	Correctness [%]	Description
Richardstraussweg	89.19	92.45	Mostly >8 cm
Beethovenstraße	92.54	97.97	Rough, uneven curbs and sidewalks
Mendelssohnweg	93.65	98.91	Up to 9% slope, several cars
Loeweweg	93.35	97.71	Up to 5% slope
Dammstraße	89.98	95.78	Rough, cobblestone, filled with cars
Flohrstraße	96.26	96.38	Frontgardens, hedges, walls, 20 cm sidewalk strip
Winkelhausenstraße	94.72	94.79	New construction, smooth, constant
Mean	> 92%	> 96%	

Table 2: Accuracy of proposed curb detection

Results – Height estimation

- High curb category | 98 % (both methods)
- Ideal, smooth surfaces and wide sidewalk with clear height differences

low

medium high

Figure 26: Results for proposed curb detection and height estimation

Results – Height estimation

- Medium curb category | 70% and 90% for 2D CS and Proposed
- Narrow sidewalk (-strips) with adjacent garden fences and vegetation
- The 2D CS method overestimates the height for curbs without an adjacent sidewalk significantly more than the proposed method

Results – Height estimation

	Correctn		
	2D CS Method	Proposed Method	Height categorie
Winkelhausenstraße	98	98	High curbs (7-15 cm)
Mendelssohnweg	86	95	High curbs (7-15 cm)
Flohrstraße	70	90	Medium curbs (3-7 cm)

Table 3: Accuracy of proposed height estimation

Discussion

- Curb detection is comparable in accuracy to state-of-the-art methods
- Additionally, reliably high and medium curb height categories
- Flexible and unique lidar setup for curb detection

	Correctness [%]	Completeness $[\%]$	Datasets	
Proposed	96.36	92.81	Seven research spec. datasets	
Yang et al. [57]	98.09	95.13	Two research spec. datasets of	
	95.98	95.13	residential and downtown area	
Ye et al. [59]	95.61	96.32	Two research spec. datasets	
	92.91	95.06		
Wang et al. [54]	92.00	77.98	Ubudan and Kitty dataset	
	89.62	81.37		
Borja et al. [46]	93.2	94.2	Two research spec. datasets	
	90.76	93.52		
Zhang et al. [61]	85.07	82.87	Research spec. dataset	

Discussion - Strengths and Advantages

- Successfully detects even the most flat curbs, which is a common challenge for other algorithms.
- Overcomes the weaknesses of Belton and Bae's ground point segmentation. Capable of handling noisy data effectively.
- Demonstrates high robustness on uneven surfaces and obstacles.
- Applies alignment, enabling
 - simple height measurement in the coordinate system
 - handling of inclined roads
- Successfully tested the algorithm's transferability to the point cloud of a terrestrial LiDAR scanner.

Discussion - Disadvantages and Limitations

- Both height estimations faces challenges with sloping curbs and adjacent vegetation etc., leading to potential overestimation.
- Distinguishing between low and medium curbs is difficult, compounded by variations in actual height around three centimeters.
- Successful region growing is necessary for curb detection and height estimation. Challenges:
- > Non-deterministic nature of normals computed using RANSAC \rightarrow variable output
- Tradeoff between
 - tight thresholds (ri & rj) to handle completely flattened curbstones that seamlessly merge with the street
 - and loose thresholds to ensure that the road is not split into parts

Discussion – Future Work

- Georeferencing.
- Adding results to OSM
- Evaluate on other data sets

The End.

Questions?

Thema der Praesentation / Autor / 27