

ILMENAU UNIVERSITY OF TECHNOLOGY

Oldenburger 3D-Tage, 31.01.–01.02.2024

Thermal single-shot 3D shape measurement of transparent objects with projected spatialstatistical pattern

<u>Henri Speck</u>, Martin Landmann, Andreas Breitbarth, Stefan Heist, Peter Kühmstedt, and Gunther Notni

3D Measurement Techniques

State-of-The-Art Optical Methods

security and forensics

diffuse

reflection

industrial metrology

3D sensor network for patient monitoring

medical engineering

Why Do We Need Thermal 3D Measurements?

3D Measurement of Transparent Objects

3D surface model

conventional VIS 3D sensor

plastic cap measurable diffuse reflection

transparent glass *not* measurable diffuse reflection

motivation

developing a **single-shot high-speed** 3D sensor for **uncooperative** surfaces

Why Do We Need Thermal 3D Measurements?

3D Measurement of Transparent Objects

Outline

motivation

thermal 3D measurement methods

simulation results single-shot

measurement example

summary and outlook

Measurement Principle: Thermal 3D Measurement

Projection and Reemission of Thermal Infrared Patterns

Realizations of Thermal 3D Sensors

MWIR 3D Sensor: Sequential Fringe Projection

schematic sensor setup

top view of the laboratory setup

animation

Measurement Principle: Thermal 3D Measurement

Projection and Reemission of Thermal Infrared Patterns

projection wavelength: $\forall IS \rightarrow \text{thermal IR}$ detection wavelength: $\forall IS \rightarrow \text{thermal IR}$

N images from 2 viewpoints

Realizations of Thermal 3D Sensors

Measurement Example: Fan (not moved)

RGB-photo

120 mm

conventional VIS 3D sensor

sequential IR fringe projection

Development Progress from Sequential Fringe Protection to Single Shot

sensor performance

measurement time > 1 s

→ **too long** for in-line quality control or dynamic processes

number of images are the limiting factor

objective:

- reduction of measurement time to ~10 ms
- further reduction of influence of **thermal diffusion**
- application for robot handling, in-line quality control or dynamic processes

Thermal Single-Shot Approach Spatial-Statistical Thermal Point Pattern

diffuse reflection in NIR

absorption and reemission in thermal IR

Thermal Single-Shot Approach Spatial-Statistical Thermal Point Pattern

diffuse reflection in NIR

10.6 µm CO₂ laser gold mirror .5 point Camera pattern Intel RealSense adaption gold structured light sensor mirror pattern 850 nm generator MWI measurement object Apple Face ID structured light sensor 940 nm

absorption and reemission in thermal IR

Thermal Single-Shot Approach

Simulation Workflow

Thermal Single-Shot Approach

Simulation Results: Borosilicate Plane

reference

CAD model

borosilicate plane

Thermal Single-Shot Approach

Simulation Results: Sphere

number of points: 150

number of points: 250

0.4

0.2

0.0

-0.2

-0

0.4

0.2

- 0.0

-0.2

-0.4

depth deviation (mm)

depth deviation (mm)

CAD model borosilicate sphere

number of points: 200

-0.2

-0.4

Realization of Thermal 3D Single Shot Sensor

Experimental Setup

Realization of Thermal 3D Single Shot Sensor

Measurement Example: Fan (not moved)

3D surface model

 $t_{\rm rec} = 1 \text{ ms}$ $t_{\rm irr} = 10 \text{ ms}$

 $t_{\rm rec} = 1 \text{ ms}$ $t_{\rm irr} = 36 \text{ ms}$

Summary & Outlook

Conclusion

Results:

- successful thermal 3D measurements for transparent objects
- build up simulation tool for thermal single-shot 3D measurement
 - temperature contrast of about 1 K
 - point density of about 300 points per 40 × 40 mm²
- realization of experimental setup
- single-shot measurement of a transparent, plastic fan with a repetition rate of 1 ms per 3D results

Summary & Outlook

Conclusion

Results:

- successful thermal 3D measurements for transparent objects
- build up simulation tool for thermal single-shot 3D measurement
 - temperature contrast of about 1 K
 - point density of about 300 points per 40 × 40 mm²
- realization of experimental setup
- single-shot measurement of a transparent, plastic fan with a repetation rate of 1 ms per 3D results

Outlook:

experimental realization of a dynamic scene

This work has been funded by the Federal Ministry of Education and Research (BMBF) within the project "MAKIR" under Grant No. 03RU1U151A.

ILMENAU UNIVERSITY OF TECHNOLOGY

Oldenburger 3D-Tage, 31.01.–01.02.2024

Thermal single-shot 3D shape measurement of transparent objects with projected spatialstatistical pattern

<u>Henri Speck</u>, Martin Landmann, Andreas Breitbarth, Stefan Heist, Peter Kühmstedt, Gunther Notni