Management und Engineering im Bauwesen

Juristisches Projektmanagement

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1,2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Management	6	180 Stunden; davon 54 Std Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teil- nahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungs- punkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine	Für Bauleitung, Projektsteuerung, Projektmanagement	K 2	Vorlesung, Übungen	Prof. Dr. Fischer

Qualifikationsziele

Viele Bauprojekte können effektiver und wirtschaftlicher durchgeführt werden, wenn das juristische Risikomanagement ausgeschöpft wird. Dieses Ziel kann dadurch erreicht werden, dass die speziellen Werkzeuge des juristischen Baumanagement zutreffend eingesetzt werden. Die Studenten/Studentinnen sollen die wesentlichen Schnittstellen vom juristischen zum technischen Teil der Bauleistung lernen und insbesondere das für das richtige Projektmanagement notwendige Problembewusstsein erkennen.

Lehrinhalte

Risikomanagement aus juristischer Sicht und Behandlung der unterschiedlichen Vertragsformen, Abwehr bzw. Durchsetzung von Nachträgen, Kündigung des Bauvertrages, gesamtschuldnerische Haftung zwischen den Verfahrensbeteiligten, Sicherheiten.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Prof. Dr. Fischer	Juristisches Projektmanagement	4		

<u>Erläuterungen:</u> Die Vorlesung findet nur im Wintersemester statt

Management und Engineering im Bauwesen

AVA - Vertragsgestaltung

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Management	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		K2	Vorlesung	Prof. Dr. Müffelmann

Qualifikationsziele

<u>AVA</u>: Die Studierenden sollen in die Lage versetzt werden, die schwierige rechtliche Systematik des öffentlichen Vergabeverfahrens für die praktische Anwendung zu erfassen und umzusetzen. Sie sollen die nationalen und europäischen Verfahren und Rechtsgrundlagen sicher erkennen und differenziert betrachten und anwenden. Zur Vervollständigung sollen die Studierenden das Nachprüfungsverfahren bei EU-Vergaben, sowie mögliche Sekundäransprüche bei schuldhaften Vergabefehlern in Grundzügen erfassen und werten können.

<u>Vertragsgestaltung:</u> Auf- und Zusammenstellung der Verdingungsunterlagen nach VOB/A/. Entwicklung von Sicherheiten beim Erkennen von Risiken und Schnittstellenproblematiken bei zusätzlichen, besonderen und zusätzlich technischen Vertragsbedingungen

Lehrinhalte

<u>AVA:</u> Öffentliche Vergabeverfahren; Erläuterung der Auftragsarten und Arten der Vergabe (VOB/A; VOL/A; VOF; SektVO; Schwellenwertbestimmung für EU-Vergabe); Verfahren und Ablauf der Ausschreibung mit allen Verfahrensschritten unter vertiefender Darstellung der Angebotsprüfung und - wertung; Erläuterungen zum GWB, § 101a und §§ 102 ff.

<u>Vertragsgestaltung</u>: Aufforderung zu Angebotsabgabe, Vergabeunterlagen, Bewerbungsbedingungen und Vertragsunterlagen nach VOB/A und VOB/B, zusätzliche und besondere Vertragsbedingungen, VOB/C, zusätzliche technische Vertragsbedingungen, Leistungsbeschreibung / Angebot / Angebotsannahme / Bauvertrag. Beispiele aus der Praxis, wie z. B.: Verhandlungsprotokoll, LV und Leistungsbeschreibungen einzelner Projekte / Schnittstellenproblematiken und Lösungen.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Felgner	Ausschreibung und Vergabe (AVA)	2		
Dr. Müffelmann	Vertragsgestaltung	2		

Erläuterungen: Die Vorlesung findet nur im Sommersemester statt

Management und Engineering im Bauwesen

Rechnungswesen und Controlling

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Management	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		K2 oder Kursar- beit	Vorlesung, Übung	Prof. Dr. Diemand

Qualifikationsziele

Ziel und Aufgabe der Vorlesung "Rechnungswesen und Controlling" ist es, theoretische und praktische Grundlagen bzw. Fachwissen zur Entwicklung, Realisierung und Durchführung eines Gesamtunternehmens-Controllingsystems in Unternehmen mit Projektleistungstätigkeit zu vermitteln.

Ergänzt werden soll dieses Ziel dadurch, dass hierzu angrenzende sowie überschneidende aktuelle Themengebiete, wie z.B. Risikomanagement, besprochen werden.

Lehrinhalte

Allgemeine betriebswirtschaftliche Einführung: Definition der ABWL, Abgrenzung zur der ABWL zum Themenbereich, Volkswirtschaftslehre, historische Entwicklung der ABWL

Einführung in den Themenbereich Controlling: Definition des Controllingbegriffs, historische Entwicklung des Controllings, Darstellung der Controllingaufgaben, Erläuterung des allgemeinen Controllingprozesses, Darstellung des Controllingprozesses in projektorientierten, Unternehmen am Beispiel Bauunternehmung

Einbindung der vorgestellten Thematiken in die Praxis: Praxisbeispiele, Praxisbeispiele aus der Bauwirtschaft

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Diemand	Rechnungswesen und Controlling	4		

<u>Erläuterungen:</u> Die Vorlesung findet nur im Sommersemester statt.

Management und Engineering im Bauwesen

Personalführung und strategische Unternehmensführung

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Management	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		Kursarbeit	Seminar Vorträge, Workshop	Prof. Dr. Plog

Qualifikationsziele

Die Studierenden sollten nach dem Abschluss des Kurses Kenntnisse in Bezug auf Leitungsfunktionen in Unternehmen vorweisen und Leitungsaufgaben qualifiziert erfüllen sowie Methoden der strategischen Unternehmensführung und Personalführung bewusst und zielorientiert anwenden können.

Lehrinhalte

Strategische Unternehmensführung

Situation des Baumarktes und Perspektiven im Hochbau in Deutschland, Unternehmensrechtsformen und Mangement, Unternehmensorganisation, langfristige Unternehmensplanung, strategisches Management, Marketing, Erfolgsmessung mit Kennzahlen

Personalführung und Unternehmenskommunikation

Unternehmenskultur/Kommunikationskultur;

Kundenkommunikation/Marketing;

Strategien und Methoden zur Umsetzung von Unternehmenszielen;

Personalmanagement,

Führungstechniken, Fallstudien zur Rolle des Managers, Motivationstechniken;

Veränderungsprozesse begleiten, führen, steuern; Fehleranalyse; Arbeitsorganisation

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Weßels	Strategische Unternehmensführung	2		
Plog	Personalführung und Unternehmenskommunikation	2		

Verfahrenstechnik im Massivbau

Semester	Dauer	Art	ECTS- Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflichtmodul Kompetenzbereich Management	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraussetzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lern- Methoden	Modul- verantwortliche(r)
Baubetrieb Bauverfahrenstechnik IT-Anwendungen AV		K2	Vorlesung Übungen	Prof. Malpricht

Qualifikationsziele

Vertiefte Kenntnisse und konstruktive Fähigkeiten der Bauverfahrenstechnik im Hoch- und Tiefbau für Planung, Arbeitsvorbereitung und Ausführung von Bauwerken aus Stahlbeton. Kenntnisse über die ausführungstechnische Strukturierung und Optimierung von Tragsystemen sowie über Verfahrenstechnik und Ablaufplanung, Technologie und Logistik zur Lösung von Bauaufgaben des konstruktiven Ingenieurbaus. Kennenlernen von Konstruktions- und Ausführungsvarianten für verschiedenen Bauwerke und Detaillösungen.

Lehrinhalte

Ausschalfristen und Hilfsstützen, Baustützen DIN EN 1065, Schalhaut, Holzschalungsträger DIN EN 13377, Traggerüste DIN EN 12812, Frischbetondruck DIN 18218, Ebenheitstoleranzen, DIN 18202, Schalungsanker, Halbfertigteile, Bewehrung, Arbeits- und Dehnfugen, Sichtbeton-Technologie, Deckelbauweise, Unterfangungen, Kletterschalverfahren, Gleitschalverfahren. Projektorientierte Behandlung von Sonderkapiteln der Arbeitsvorbereitung und Bauausführung von Massivbauwerken. Ganzheitliche Betrachtung der Schnittstellen zwischen Entwurfs- und Tragwerksplanung, Ausführung und Kalkulation. System- und Verfahrensauswahl für Ortbeton- und Fertigteil-Konstruktionen, Stahlbeton-Skelettbauten, Industrie- und Hallenbauten, Ingenieurbau-werke, Brücken-Traggerüste, Widerlager- und Überbau-Schalungen.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Prof. Malpricht	Verfahrenstechnik im Massivbau	4		

Spezialtiefbau Semester Dauer Art **ECTS-Punkte** Studentische Arbeitsbelastung 1, 2 oder 3 4 SWS Wahlpflicht 6 180 Stunden; davon Kompetenzbereich 54 Std. Präsenzstudium, 126 Std. Selbststudium Engineering

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungs- punkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		K2	Vorlesung Übung	Prof. Dr. Beilke

Qualifikationsziele

Den Studierenden sollen spezielle Kenntnisse zur Wechselwirkung Bauwerk/Baugrund vermittelt werden. Ferner werden vertiefte Kenntnisse zur Sicherung bestehender Bauwerke und zur Schadenssanierung erworben.

Lehrinhalte

Ausführung und Bemessung von Baugruben neben Nachbarbebauungen, Methoden der Unterfangung von Bauwerken, Bemessung von Unterfangungen, Injektionstechniken, Düsenstrahlverfahren, Soilfracturing, Planung und Ausführung von Sicherungsmaßnahmen (Nachgründung von Bauwerken), Sicherung bestehender Stützkonstruktionen, Tragverhalten und Bemessung von MICRO-Pfählen und Bodennägeln, Aufnahme von Gründungsschäden und Beweissicherung, Schadensarten und Schadenursachen im Gründungsbereich von Bauwerken, Wirkung und Beurteilung von Erschütterungen im Baugrund (Baugrunddynamik)

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Beilke	Spezialtiefbau	4		

<u>Erläuterungen:</u> - Die Vorlesung findet nur im Sommersemester statt..

Jade Hochschule – Studienort Oldenburg Management und Engineering im Bauwesen Bauschäden und Sanierung

Dadoonadon and Camorang							
Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung			
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Konstr. IngBau.	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium			

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		Kursarbeit	Vorlesung, Übung	Prof. Voßmann

Qualifikationsziele

Ziel der Veranstaltung ist, typische Schadenbereiche aufzuzeigen und die baukonstruktiven und bauphysikalischen Kenntnisse zu vertiefen. Neben der Erweiterung des Fachwissens liegt der Schwerpunkt der Veranstaltung in der Gutachtenerstattung.

Lehrinhalte

Neben umfangreichen Beispielen aus der Praxis gibt die Veranstaltung einen Einblick in die Gutachtertätigkeit und nützliche Hinweise zur Erstattung von Bauschadensgutachten.

- 1) Bedeutung der Beurteilung von Bauschäden für die Praxis, Gerichts-, Privat- und Schiedsgutachter, Anforderungen an ein Gutachten
- 2) Schadensfeststellung und Ursachenforschung, Schadenaufnahme und Untersuchungen, Durchführung eines Ortstermins
- 3) Neubauprobleme und Altbauprobleme, allgemein anerkannte Regeln der Technik für Alt- und Neubau
- 4) Schadenbeispiele ausgewählter Bereiche, z. B.: Schäden an Dächern, Terrassen und Balkonen, im Bereich der Bauwerksabdichtung, an Außenwänden, Fenstern und Verglasungen, Schimmelpilzbildung, Mängel an Treppen, mangelhafte Verkehrssicherheit
- 5) Bauliche Maßnahmen zur Energieeinsparung energetische Sanierung
- 6) Nachbesserung von Bauschäden, Festlegung der Mängelbeseitigungsmaßnahmen und -kosten, Minderung

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Voßmann	Bauschäden und Sanierung	4		

Erläuterungen: - Die Vorlesung findet nur im Wintersemester statt..

Management und Engineering im Bauwesen

Holzbau (Energieeffizientes Bauen mit Holz)

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Konstr. IngBau.	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		Kursarbeit	Vorlesung Projektarbeit	Prof. Dr. Härtel

Qualifikationsziele

Zeitgemäße Konstruktionen des Wohn- und Geschossbaus werden energieeffizient und nachhaltig geplant. Hierbei spielen ökologische Bau- und Dämmstoffe aus natürlichen Holz- und Holzwerkstoffen eine zunehmende Rolle. Die Herstellung von Energieeffizienzhäusern und Passivhäusern aus Holz liegt dabei auf der Hand.

Die Studenten/innen erwerben durch die projektorientierte Arbeitsweise vertiefte Kenntnisse zur Planung, Berechnung und Umsetzung von energieeffizienten Gebäuden aus Holz.

Lehrinhalte

Statische, konstruktive und bauphysikalische Bearbeitung von ein- und mehrgeschossigen Wohngebäuden in Holztafelbauweise. Vertikaler und horizontaler Lastabtrag, Aussteifungen im Holztafelbau, konstruktive Durchbildung von Anschlussdetails, insbesondere aussteifende Scheiben und Windverankerungen. Brandschutz im Zusammenhang mit Holz im Wohn- und Geschossbau.

Verwendung ökologischer Bau- und Dämstoffe, insbesondere aus natürlichen Holz- und Holzwerkstoffen. Untersuchung alternativer Bauweisen aus Holz (Massivholz, Brettsperrholz, etc.). Bauphysikalische Grundlagen (Schallschutz, Wärmeschutz, Feuchteschutz, Brandschutz) für moderne Holzkonstruktionen. Planung modernster Haustechnik (z.B. Solarenergie, Wärmepumpen, Heiztechnik, etc.), Planung von Energieeffizienzhäusern und Passivhäusern aus Holz, EnEV, Förderprogramme, Ökologie und Nachhaltigkeit.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Härtel	Energieeffizientes Bauen mit Holz (Holzbau)	4		

<u>Erläuterungen:</u> - Die Vorlesung findet nur im Wintersemester statt.

Management und Engineering im Bauwesen

Stahlbau (On- und Offshore Windenergietechnik)

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Konstr. IngBau.	6	180 Stunden; davon 54 Std. Präsenzstudium, 124 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		K2	Vorlesung Übung	Prof. Dr. Tawakoli

Qualifikationsziele

Selbstständige Durchführung von Berechnungen stählerner Windenergieanlagen hinsichtlich Standsicherheit und Gebrauchstauglichkeit

Lehrinhalte

Nach einer kurzen Einführung in die Strukturdynamik befasst sich die Lehrveranstaltung mit der Berechnung einer stählernen Windenergieanlage. Anschließend werden unterschiedliche On- und Offshore-Gründungsvarianten diskutiert. Lastannahmen bezüglich Wind und Wellen, wesentliche Nachweise bezüglich Standsicherheit, Anschlüsse und Betriebsfestigkeiten werden dabei behandelt.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Tawakoli	On- und Offshore-Windenergietechnik	4		

<u>Erläuterungen:</u> - Die Vorlesung findet nur im Sommersemester statt.

Management und Engineering im Bauwesen

Beton- und Spannbetonbau / Ingenieurbauwerke

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflicht	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine	Ingenieurbüro	K2, Kursarbeit)*	Vorlesung Übung	Prof. Dr. Prüser

Qualifikationsziele

Die Studierenden sollen erkennen, dass Vordimensionierung, Entwurf, Ausführungsplanung und Bauausführung in Wechselwirkung stehen. Die Koordination von übergeordneten Wissen und Detailplanung realisiert den Projekterfolg.

Lehrinhalte

Kurze Einarbeitung und Vertiefung von Grundlagenwissen, um bei der heterogenen studentischen Gruppe einen einheitlichen Wissensstand zu erreichen.

Anhand eines Bauprojektes im Beton- Spannbetonbau werden übergreifende Entwurfsgrundlagen gemeinsam mit den Studierenden erarbeitet. Ausgehend vom Bauprojekt generieren sich Detailfragestellungen, die statisch konstruktiv umzusetzen sind.

Die Schwerpunktsetzung erfolgt bedarfsorientiert in den Bereichen: Nachweisführungen im GZT/GZGT nach aktueller Vorschriftenlage. Stabwerkmodelle, Verformungs- und Rissverhalten. Modellierung realer Tragwerke unter Berücksichtigung ihrer Umgebung (Datenaustausch).

Generierung statischer Systeme. Modellierung konkreter Querschnitte und Tragwerke in Kopplung CAD/BIM FEM..

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Prüser	Beton- und Spannbetonbau	4		
<u> </u>				

Erläuterungen: -)* Prüfungsform nach Auswahl des Dozenten.

Management und Engineering im Bauwesen

Kanalnetze

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbelastung
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Infrastruktur	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		Kursarbeit	Vorlesung Vorträge Besichtigungen	Prof. Dr. Kruse

Qualifikationsziele

Kanalnetze sind besonders langlebige Wirtschaftsgüter, üblicherweise im Eigentum der öffentlichen Hand. Die Planung, Herstellung, Betrieb sowie Wartung und Sanierung der Kanalnetze erfordert besondere Kenntnis der Zusammenhänge im technischen und wirtschaftlichen Bereich.

Die Studierenden sollen die wesentlichen technischen Randbedingungen bis hin zu deren Auswirkungen auf Gebühren und Beiträge kennen lernen und einschätzen können. Die Entscheidungsprozesse und Abwägungen vor allem unter Beachtung des Wandels im ökologischen Verständnis und der demografischen Entwicklung sollen deutlich werden.

Lehrinhalte

Werkstoffe in Kanalnetzen, Aufbau und Betrieb der Netze. Bauweisen im städtischen Umfeld und Ausschreibung/Vergabe/Abrechnung. Sanierungsmöglichkeiten unter Beachtung von Schadensentwicklungen, Nutzung von Datenbanken. Entscheidungskriterien für Reparatur, Renovierung und Erneuerung. Aufbau von kommunalen Gebührenkalkulationen.

Aktuelle und zu erwartende Entwicklungen im Bereich von Regen- und Schmutzwasser.

Einbeziehung der Grundstücksentwässerung in gesamtheitliche Planungsansätze.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Kruse	Kanalnetze	4		

Erläuterungen: - Die Vorlesung wird nur im Sommersemester angeboten

Jade Hochschule – Studienort Oldenburg Management und Engineering im Bauwesen Pipelines, Energie- und Datennetze

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Infrastruktur	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungs- punkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		K2	Vorlesung und Übung	Prof. Wegener

Qualifikationsziele

Erkennen der wesentlichen Zusammenhänge und Bedeutung der Verflechtungen von Pipelines, Energie- und Datennetzen für die Infrastruktur als Grundlage zur Entwicklung einer modernen Industrie- und Dienstleistungsgesellschaft. Grundlegende Erkenntnisse zum Energietransport, zum Energiemanagement, zur Steuerung der Energieströme am Beispiel des Erdgasnetzes sollen die Einkaufs- und Verkaufspolitik, die Speicherphilosophie der Energieversorgungsunternehmen verdeutlichen.

Lehrinhalte

Pipelinenetze, Energiewege, Grundlagen der Thermodynamik, Gastransport, Erdgas als Energieträger, Biogas, Leitungsauslegungen, Hochdruck-, Mitteldruck-, Niederdrucknetze, LNG, Aufbau und Funktion von Kavernenspeichern, Engineering zur Planung von Anlagen und Fernleitungen, Genehmigungsverfahren

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Wegener	Pipelines, Energie- und Datennetze	4		

Erläuterungen: - Die Vorlesung wird nur im Wintersemester angeboten

Planung/Netzerkundung

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Infrastruktur	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungs- punkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		K 1,5 / m.P. Kursarbeit	Vorlesung	Prof. Dr. Priesemann

Qualifikationsziele

Für Planungen insbesondere der netzgebundenen Infrastruktur spielt die Kenntnis über bereits vorhandene Transport- und Versorgungsleitungen, großräumige Boden-/Baugrundverhältnisse und vorhandene unterirdische Hindernisse eine herausragende Rolle. Die vorhandenen Kartenwerke sind dabei teilweise lückenhaft oder im engen innerstädtischen Bereich ungenau, so dass planungsbegleitend eine umfangreiche Nacherkundung erfolgen muss. Unterschiedliche physikalische Verfahren, die in der Baugrunderkundung nicht zum Standard gehören, bieten hier die Möglichkeit verbesserter Informationsgewinnung.

Lehrinhalte

Grundlagen, An- und Auswertung unterschiedlicher Erkundungsverfahren für Boden und unterirdische Infrastruktur (Bohren, Sondieren, Geo-Radar, Geo-Elektrik, Geo-Magnetik, Seismik etc., Verfahren der Darstellung: Profile, Schnitte 3D etc., Verknüpfung zu GIS). Erläuterung der verwendeten Technik, Exkursion

Weitere Lehrveranstaltungen des Moduls Planung/Netzerkundung				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Schwerdthelm	Planung	2		
Dr. Priesemann	Netzerkundung	2		

<u>Erläuterungen:</u> - Die Vorlesung wird nur im Wintersemester angeboten

Management und Engineering im Bauwesen

Verkehrsnetze						
Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung		
1, 2 oder 3	4 SWS	Wahlpflicht	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium		

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		K2	Vorlesung	Prof. Pätzold

Qualifikationsziele

Verkehrswege sind als wesentlicher Teil der Infrastruktur für die Volkswirtschaft unersetzlich. Die Studierenden sollen grundlegende Kenntnisse über gesetzliche Grundlagen, Planung, Entwurf, Bau und Betrieb von Straßen- und Eisenbahnanlagen erhalten. Weiterhin gewinnen mit dem Rückgang der Neubauleistungen die Mängelerfassung / Schadensanalyse und die Bauweisen der Erhaltung von Verkehrswegen an Bedeutung für die Studierenden.

Lehrinhalte

Straßenwesen:

Übersicht über den Planungs- und Entwurfsablauf. Einführung in die Dimensionierung von Verkehrsflächen aus Asphalt, Pflaster und Beton. Anwendung durch Berechnung einfacher Beispiele. Grundlagen der Asphaltbauweise in folgenden Schritten: Übersicht über Mischgutarten, Einführung Asphalttechnologie, Herstellen sowie Einbauen und Verdichten von Asphalt, Einbindung in den Bauvertrag Eisenbahnbau:

Grundlagen Fahrweg, Linienführung, Sicherungstechnik, Entwurf eines S-Bahnhofs unter Berücksichtigung der Umsteigebeziehungen und Kreuzungskonflikte inkl. Konstruktion eines Taktfahrplanes Aufgaben und Einrichtungen eines Rangierbahnhofes.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Dr. Heckler	Verkehrsnetze Eisenbahnbau	2		
Pätzold	Verkehrsnetze Straßenwesen	2		

Erläuterungen: - Die Vorlesung findet nur im Wintersemester statt.

Management und Engineering im Bauwesen

Volkswirtschaftliche Planungen im Wasserbau

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	4 SWS	Wahlpflicht Kompetenzbereich Infrastruktur	6	180 Stunden; davon 54 Std. Präsenzstudium, 126 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungs- punkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		H + K1,5	Vorlesung Übung	Prof. Rau

Qualifikationsziele

Viele Projekte des Wasserbaus (z. B. Hafenbau, Hochwasserschutz), aber auch anderer Infrastrukturmaßnahmen (z. B. Straßenbau) sind dadurch gekennzeichnet, dass der Nutzen nicht unmittelbar dem Projektträger, sondern der "Volkswirtschaft" zu Gute kommt.

Die Studenten/Studentinnen sollen die wesentlichen volkswirtschaftlichen Auswirkungen von Infrastruktur-Projekten erkennen und bewerten können, um dann über verschiedene Kriterien die volkswirtschaftlich günstigste Lösung für ein Problem zu finden.

Lehrinhalte

Überblick über rechtliche Grundlagen, Theorie der Planung, Systematik volkswirtschaftlicher Betrachtung, Wirtschaftlichkeitsuntersuchungen, Volkswirtschaftlicher Nutzen im Wasserbau, Risikobetrachtungen am Beispiel Hochwasser, Anwendungen der Warteschlangentheorie im Verkehrswasserbau

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Rau	Volkswirtschaftliche Planungen im Wasserbau	4		

<u>Erläuterungen:</u> - Die Vorlesung findet nur im Sommersemester statt.

Studiengang: Management und Engineering im Bauwesen

English for the professions

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1,2,3	2 SWS	Wahlfach	3	90 Stunden; davon 27 Std. Präsenzstudium, 63 Std. Selbststudium

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche (r)
Schulenglisch	Meetings in Englisch besser folgen können und die aktive Teil- nahme durch Frage- stellen: ein wichtiges Training für den späte- ren Beruf. Verhand- lungen und Vorstel- lungsgespräche auf Englisch.	Kursarbeit	Seminar Übung	D. Howson M.A.

Qualifikationsziele

Ziel des Kurses ist es, Klarheit, Leichtigkeit und Sicherheit in der Kommunikation zu fördern – mit Blick auf die Berufswelt. Dies geschieht hauptsächlich über die gesprochene Sprache. Die "Schlagfertigkeit" in der Fremdsprache wird gestärkt. Qualifikationsziel: "Ich könnte mich beruflich auf Englisch selbstbewusst präsentieren".

Lehrinhalte

In diesem Kurs wird praxisnah, realistisch und nicht akademisch gearbeitet. Strategien für Meetings; Präsentationstechnik für professionelle Referate; bei Bedarf wird an der Situation 'Vorstellungsgespräch' gearbeitet; der Fachwortschatz wird ausgebaut; unkomplizierte Fachtexte werden verfasst.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
D. Howson	English for the Professions	2		

Projekt Kompetenzbereich Infrastruktur

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung
1, 2 oder 3	6 SWS	Wahlpflicht	12	360 Stunden; davon 81 Std. Präsenzstudium, 279 Std. Selbststudium

Voraus- setzungen für die Teilnahme	en für Prüfungsdauer		Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		Kursarbeit	Gruppenarbeit Vorträge	Prof. Dr. Kruse Prof. Wegener

Qualifikationsziele

Im Bereich der Infrastruktur werden Projekte unter Beteiligung unterschiedlichster Fachleute vorbereitet, diskutiert und zur Beschlussfassung gebracht. Das Ergebnis muss dann in Gremien vorgestellt und verteidigt werden.

Die Studierenden sollen im Projekt anhand unterschiedlicher Beispiele aus dem Bereich der Infrastruktur (Kanalnetze, Baugebiete, Pipelines, ÖPNV, ...) im Team ein Projekt inhaltlich und wirtschaftlich konzipieren und die gewählte Lösung gegenüber Dritten verteidigen (Ingenieurwettbewerb). Um die Aufgabe praxisnah zu gestalten, werden Externe (Ing.-Büros, Behörden, Unternehmen) in die Projekte eingebunden.

Lehrinhalte

Abhängig von der Aufgabenstellung. Die Studierenden müssen sich auch Grundkenntnisse in besonderen Themen im Verlauf des Projektes aneignen und für das Team aufbereiten. Die ermittelte Lösung muss in einer Form dargestellt und diskutiert werden, die in einem Gremium von Entscheidungsträgern anerkannt und als Grundlage für eigene Entscheidungen genutzt wird.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Kruse	Projekt Kompetenzbereich Infrastruktur	6		
Wegener	Projekt Kompetenzbereich Infrastruktur	6		

<u>Erläuterungen:</u> - Die Projekte werden im Wechsel angeboten.

Management und Engineering im Bauwesen

Projekt Konstruktiver Ingenieurbau

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung	
1, 2 oder 3	6 SWS	Wahlpflicht	12	360 Stunden; davon 81 Std. Präsenzstudium, 279 Std. Selbststudium	

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer (Voraussetzung für die Vergabe von Leistungspunkten)	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Kentnisse im konstr. Ingeni- eurbau		Kursarbeit	Gruppenarbeit Vorträge Berichtswesen	Studiendekan mit Dozenten aus dem Konstr. Ing.bau

Qualifikationsziele

Bearbeitung eines komplexen Projektes in einer Gruppe. Arbeitsteilung und Selbstorganisation der Abläufe. Schnittstellenmanagement.

Stärken innerhalb der Gruppe erkennen und für den Projekterfolg einsetzen.

Erleben des Berufsalltages in einem Planungsbüro durch eine simulierte Projektbearbeitung in der Hochschule.

Lehrinhalte

Erfassen der Rahmenbedingungen für ein komplexes Bauvorhaben. Je nach Art des ausgewählten Objektes werden Lehrinhalte vermittelt, die bei individueller Schwerpunktsetzung aus den folgenden Bereichen kommen:

Beschaffung und Aufbereitung digitaler Planungsgrundlagen / Statisch konstruktive Erarbeitung eines Bauwerksentwurfes oder Sondervorschlages / Erkennen maßgebender Details, an denen sich die Machbarkeit entscheidet / Konzeption des Tragsystems / Konzeption der Bauabläufe / Systemfindung und Simulation / Durchkonstruieren des Bauvorhabens, auch im Detail / Integration weiterer an der Planung zu beteiligenden Gewerke / ... der ständige Blick auf Kosten, Termine und Qualität / Erstellung von prüfbaren Unterlagen (Berichte, digitale und analoge Pläne, Protokolle. Planunterlagen / Zielgerichtete Anwendung von Vorschriften.

Lehrveranstaltungen				
Doz	Dozent(in) Titel der Lehrveranstaltung		sws	
div. ten	Dozen-	Projekt Konstruktiver Ingenieurbau	6	

Erläuterungen: Diese Lehrveranstaltung wird von diversen Dozenten angeboten. Die zu bearbeitenden Projekte werden individuell ausgewählt, und ggf. unter wechselnder Schwerpunktsetzung gelehrt.

Projekt	Kompetenz	bereich M	Management
---------	-----------	-----------	------------

Semester	Dauer	Art	ECTS-Punkte	Studentische Arbeitsbe- lastung	
1,2 oder 3	6 SWS	Pflicht	12	360 Stunden; davon 81 Std. Präsenzstudium, 279 Std. Selbststudium	

Voraus- setzungen für die Teilnahme	Verwendbarkeit	Prüfungsform / Prüfungsdauer	Lehr- und Lernmethoden	Modul- verantwortliche(r)
Keine		Kursarbeit	Gruppenarbeit Übung Planspiel	Prof. Everts

Qualifikationsziele

Die Studierenden sollen nach Abschluss des Kurses in der Lage sein, die unterschiedlichen Einzeldisziplinen des Baubetriebs und der Bauverfahrenstechnik gleichzeitig auf komplexe Sachverhalte anzuwenden und adäquate Lösungsansätze zu erarbeiten.

Lehrinhalte

Am Beispiel eines größeren und komplexen Bauvorhabens sollen baubetriebliche und bauverfahrenstechnische Aufgabenstellungen gelöst werden. Hierzu zählen insbesondere:

- Verfahrensauswahl / Verfahrensvergleiche
- Baublaufplanung- / Ablaufsteuerung
- Ablaufvisualisierung mit Bauphasenplänen
- Erarbeiten von Alternativen (Nebenangebote)
- Kalkulation
- Arbeitsvorbereitung
- Planung der Baustelleneinrichtung und logistische Fragen
- Ortung und Quantifizierung von Projektrisiken (Risikomanagement)
- Bearbeiten verschiedener Szenarien; z.B. Nachtragsforderungen, Umgang mit Leistungsstörungen etc.

Lehrveranstaltungen				
Dozent(in)	Titel der Lehrveranstaltung	sws		
Everts	Projekt Kompetenzbereich Management	6		