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Abstract
The monitoring of continuous phenomena like temperature, air pollution, pre-
cipitation, soil moisture etc. is of growing importance. Decreasing costs for
sensors and associated infrastructure increase the availability of observational
data. These data can only rarely be used directly for analysis, but need to be
interpolated to cover a region in space and/or time without gaps. So the ob-
jective of monitoring in a broader sense is to provide data about the observed
phenomenon in such an enhanced form.

Notwithstanding the improvements in information and communication tech-
nology, monitoring always has to function under limited resources, namely:
number of sensors, number of observations, computational capacity, time, data
bandwidth, and storage space. To best exploit those limited resources, a mon-
itoring system needs to strive for efficiency concerning sampling, hardware,
algorithms, parameters, and storage formats.

In that regard, this work proposes and evaluates solutions for several prob-
lems associated with the monitoring of continuous phenomena. Synthetic ran-
dom fields can serve as reference models on which monitoring can be simulated
and exactly evaluated. For this purpose, a generator is introduced that can
create such fields with arbitrary dynamism and resolution. For efficient sam-
pling, an estimator for the minimum density of observations is derived from the
extension and dynamism of the observed field. In order to adapt the interpo-
lation to the given observations, a generic algorithm for the fitting of kriging
parameters is set out. A sequential model merging algorithm based on the
kriging variance is introduced to mitigate big workloads and also to support
subsequent and seamless updates of real-time models by new observations.
For efficient storage utilization, a compression method is suggested. It is de-
signed for the specific structure of field observations and supports progressive
decompression.

The unlimited diversity of possible configurations of the features above calls
for an integrated approach for systematic variation and evaluation. A generic
tool for organizing and manipulating configurational elements in arbitrary com-
plex hierarchical structures is proposed. Beside the root mean square error



(RMSE) as crucial quality indicator, also the computational workload is quan-
tified in a manner that allows an analytical estimation of execution time for
different parallel environments.

In summary, a powerful framework for the monitoring of continuous phe-
nomena is outlined. With its tools for systematic variation and evaluation it
supports continuous efficiency improvement.

environmental monitoring, spatio-temporal interpolation, sensor data stream,
kriging variance, computational efficiency



Zusammenfassung
Das Monitoring kontinuierlicher Phänomene wie Temperatur, Verteilung von
Luftschadstoffen, Niederschlag, Bodenfeuchte etc. gewinnt zunehmend an Be-
deutung. Bei sinkenden Kosten für Sensoren und Kommunikationsinfrastruk-
tur nimmt die Verfügbarkeit von entsprechenden Messdaten stetig zu. Eine
unmittelbare Nutzung dieser Messdaten ist jedoch nur selten möglich; für vie-
le Analysen müssen sie interpoliert werden, um einen Bereich räumlich und/
oder zeitlich lückenlos abzudecken. So besteht die Aufgabe eines Monitorings
im weiteren Sinne auch darin, die beobachtete Variable in einer solchen lücken-
losen Form bereitzustellen.

Trotz stetigem Fortschritt der Informations- und Kommunikationstechno-
logie bleibt ein Monitoring stets begrenzten Ressourcen unterworfen: Anzahl
der Sensoren und Beobachtungen, Rechenleistung, Zeit, Datenraten und Spei-
cherplatz. Für eine bestmögliche Nutzung der jeweils verfügbaren Ressourcen
sollte stets eine hohe Effizienz bezüglich der Sensorik, der Hardware, der Al-
gorithmen und zugehöriger Parameter sowie der Speicherformate angestrebt
werden.

In Bezug auf diese Problemstellung werden verschiedene Lösungsansätze er-
arbeitet und evaluiert. Synthetische kontinuierliche Zufallsfelder dienen dabei
als Referenz, um die Qualität und Effizienz des darauf simulierten Monitorings
exakt quantifizieren zu können. Es wird ein Generator vorgestellt, der Zufalls-
felder beliebiger Dynamik und Auflösung erzeugt. Für eine möglichst effiziente
Messanordnung wird ein Schätzer für die minimale Beobachtungsdichte aus
der Ausdehnung und Dynamik des beobachteten Feldes abgeleitet. Für eine
gute Adaption der Interpolation an die durch die Beobachtungen gegebenen
statistischen Eigenschaften wird ein generischer Algorithmus zur Parameter-
schätzung des Kriging-Interpolators vorgestellt. Ein sequentieller Algorithmus
zur Verschmelzung mehrerer Interpolationsergebnisse eines Bereichs kann den
Berechnungsaufwand reduzieren und kann außerdem verwendet werden, um
in einem Datenstromsystem kontinuierlich und nahtlos neue Beobachtungen
in ein Echtzeit-Modell zu integrieren. Zur effizienteren Nutzung von Speicher-
platz wurde ein Kompressionsverfahren entwickelt. Es nutzt die spezifischen
Eigenschaften der Beobachtungsdaten von kontinuierlichen Phänomenen und
unterstützt eine progressive Dekompression.



Die erwähnten Werkzeuge bieten prinzipiell eine unbegrenzte Vielfalt an
Parametern und somit Konfigurationsmöglichkeiten. Um diese hierarchisch zu
organisieren sowie systematisch zu variieren und zu evaluieren, wurde ein ent-
sprechendes Softwaremodul entwickelt und angewendet. Dabei wurde neben
dem Root Mean Square Error (RMSE) als zentraler Qualitätsindikator auch
der Berechnungsaufwand in einer Weise quantifiziert, die eine Abschätzung der
Ausführungsdauer eines Arbeitspakets für verschiedene parallele Rechnerkon-
figurationen erlaubt.

Insgesamt wird ein umfassendes Framework für das Monitoring kontinuier-
licher Phänomene vorgestellt. Mittels integrierter Erweiterungen zur systema-
tischen Variation und Evaluation wird eine kontinuierliche Effizienzsteigerung
der Prozesse ermöglicht.

Umweltmonitoring, Spatio-temporale Interpolation, Sensordatenströme, Kriging-
Varianz, Berechnungseffizienz



Contents

1 Introduction 1

1.1 Motivation and Research Questions . . . . . . . . . . . . . . . . 2
1.2 Main Challenges and Contributions . . . . . . . . . . . . . . . . 3

2 Continuous Phenomena 11

2.1 Observing and Interpolating Continuous Phenomena . . . . . . 12
2.2 Deterministic Approaches . . . . . . . . . . . . . . . . . . . . . 15
2.3 Geostatistical Approaches . . . . . . . . . . . . . . . . . . . . . 17
2.4 Mixed Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Monitoring 27

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 (Near) Real-Time Monitoring . . . . . . . . . . . . . . . 31
3.2.2 Persistent Storage and Archiving . . . . . . . . . . . . . 32
3.2.3 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Resources and Limitations . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Sensor Accuracy . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Computational Power . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Time (Processing and Transmission) . . . . . . . . . . . 40
3.3.5 Energy (Processing and Transmission) . . . . . . . . . . 41

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



4 Spatio-temporal Interpolation: Kriging 47

4.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 The Experimental Variogram . . . . . . . . . . . . . . . . . . . 49
4.3 The Theoretical Variogram and the Covariance Function . . . . 51
4.4 Variants and Parameters . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Kriging Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 System Architecture 65

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Workflow Abstraction Concept . . . . . . . . . . . . . . . . . . . 67

5.2.1 Datasets (Input/Source and Output/Sink) . . . . . . . . 70
5.2.2 Process/Transmission . . . . . . . . . . . . . . . . . . . . 71

5.3 Monitoring Process Chain . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 Random Field Generation by Variogram Filter . . . . . . 75
5.3.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Experimental Variogram Generation . . . . . . . . . . . 86
5.3.4 Experimental Variogram Aggregation . . . . . . . . . . . 88
5.3.5 Variogram Fitting . . . . . . . . . . . . . . . . . . . . . . 93
5.3.6 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.7 Error Assessment . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Performance Improvements for Data Stream Management . . . . 99
5.4.1 Problem Context . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2 Sequential Model Merging Approach . . . . . . . . . . . 101
5.4.3 Compression and Progressive Retrieval . . . . . . . . . . 109

5.5 Generic Toolset for Variation and Evaluation of System Confi-
gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5.1 Context and Abstraction . . . . . . . . . . . . . . . . . . 118
5.5.2 Computational Workload . . . . . . . . . . . . . . . . . . 122
5.5.3 Systemantic Variation of Methods, Parameters and Con-

figurations . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.4 Overall Evaluation Concept . . . . . . . . . . . . . . . . 130

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



6 Experimental Evaluation 135

6.1 Minimum Sampling Density Estimator . . . . . . . . . . . . . . 136
6.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 136
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Variogram Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 142
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Sequential Merging . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 150
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 154
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5 Prediction of Computational Effort . . . . . . . . . . . . . . . . 161
6.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 161
6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.6 Case Study: Satellite Temperature Data . . . . . . . . . . . . . 164
6.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 165
6.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Conclusions and Perspective 173

References 183

A Declaration 197





Figures

1.1 Monitoring evaluation principle . . . . . . . . . . . . . . . . . . 8

3.1 Model and monitoring system as mediator . . . . . . . . . . . . 29
3.2 Superordinate monitoring system properties and their interde-

pendencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Spatio-temporal experimental variogram . . . . . . . . . . . . . 50
4.2 Spatio-temporal theoretical variogram . . . . . . . . . . . . . . . 52
4.3 Spatio-temporal covariance function . . . . . . . . . . . . . . . . 53
4.4 Different covariance function types . . . . . . . . . . . . . . . . 54
4.5 Spatio-temporal variogram models . . . . . . . . . . . . . . . . . 55

5.1 Monitoring principle for continuous phenomena . . . . . . . . . 66
5.2 Abstraction of a process/transmission step with associated pro-

perties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Simulation framework architecture . . . . . . . . . . . . . . . . 74
5.4 Pure white noise grid . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Random field generation by moving average filter . . . . . . . . 77
5.6 Nyquist-Shannon sampling theorem . . . . . . . . . . . . . . . . 82
5.7 Experimental variogram of sine signal . . . . . . . . . . . . . . . 84
5.8 Experimental variogram point cloud . . . . . . . . . . . . . . . . 87
5.9 BSP tree partitioning process . . . . . . . . . . . . . . . . . . . 90
5.10 Aggregation of variogram points using BSP . . . . . . . . . . . . 92
5.11 Weighting functions . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.12 Theoretical variogram fitted to aggregated variogram cloud . . . 95
5.13 Monitoring system architecture . . . . . . . . . . . . . . . . . . 100
5.15 Merging of models by using weight maps . . . . . . . . . . . . . 104
5.14 Kriging result with value map and corresponding deviation map 104

vii



5.16 Sequential calculation schema . . . . . . . . . . . . . . . . . . . 107
5.17 Theoretical computational complexity of master model calcula-

tion vs. sequential calculation method . . . . . . . . . . . . . . . 108
5.18 Binary space partitioning schema for one dimension . . . . . . . 113
5.19 Fencepost error problem for integer values . . . . . . . . . . . . 115
5.1 Binary compression format for progressive sensor data storage . 116
5.2 Binary format with flexible bit length per dimension . . . . . . . 117
5.20 Elements of monitoring taking into consideration the limited

ressources time and energy . . . . . . . . . . . . . . . . . . . . . 119
5.21 Generic structure to quantify computational effort . . . . . . . . 124
5.22 UML class diagram for generic organisation of configuration va-

riants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 Two-dimensional sine signal as raster grid . . . . . . . . . . . . 137
6.2 Sampling variations applied to a two-dimensional sine signal . . 138
6.3 Sampling variations applied to a three-dimensional sine signal . 139
6.4 Two-dimensional synthetic random field generated by a Gaussi-

an covariance function . . . . . . . . . . . . . . . . . . . . . . . 140
6.5 Sampling variations applied to a two-dimensional random field . 140
6.6 Sampling variations applied to a three-dimensional random field 141
6.7 Experimental continuous random field as image sequence . . . . 143
6.8 Variogram point cloud aggregation for spatial and temporal di-

stances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.9 Separable variogram model fitted to aggregated points . . . . . 145
6.10 Evaluation diagrams of 108 parameter option variants . . . . . . 148
6.11 Evaluation of sequential method . . . . . . . . . . . . . . . . . . 151
6.12 Performance comparison between master model and sequenced

calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.1 Original header of ARGO drifting buoy data . . . . . . . . . . . 154
6.2 Header for the compressed dataset of ARGOS drifting buoy ob-

servations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3 Compressed data for three observations of ARGO drifting buoys 156
6.4 Compressed data with prolonged bit length . . . . . . . . . . . . 157
6.13 Data volumes (KB) in different formats for 3 datasets . . . . . . 158
6.14 Performance evaluation of four computer system configurations . 163



6.15 Sea surface temperature (SST) satellite image . . . . . . . . . . 166
6.16 Evaluation diagrams of 108 parameter option variants . . . . . . 169
6.17 Variogram generated by the random observations on the sea

surface temperature (SST) image . . . . . . . . . . . . . . . . . 170
6.18 SST satellite data interpolation result . . . . . . . . . . . . . . . 171





Chapter 1

Introduction
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2

1.1 Motivation and Research Questions

Recent developments in the sector of information and communication tech-
nology (ICT) have enormously expanded possibilities and reduced costs at
the same time [Gama and Gaber, 2007, Appice et al., 2014]. As a conse-
quence, the monitoring of continuous phenomena like temperature or pollution
by stationary sensors has been intensified since its benefits can be utilized at
much lower expenses. There are manifold subject areas which are dealing with
phenomena that can be modelled as continuous fields [Cova and Goodchild,
2002, Camara et al., 2014]. Analyses based on this specific abstraction model
can provide significant benefit to them. The areas of application range from
mining, cover matters of geology, oceanology and agriculture and sometimes
even touch rather exceptional subjects like medicine or astronomy.

Even more applications can be expected in the future because of the univer-
sality of the concept of a continuous field. Widely differing types and charac-
teristics of phenomena can be incorporated in appropriate covariance functions
which express the degree of variability of such a field as a function of spatial,
temporal or spatio-temporal distance.

Since a field can never be observed as a whole, it has to be estimated from
discrete observations by using some interpolation method. Making the law of
variability explicit by the covariance function allows this process to be carried
out optimally.

In this context, monitoring can be seen as purposeful organization and pro-
cessing of observations or samples—the terms are used synonymously here—in
order to derive a useful model of a particular phenomenon. The main ob-
jective is to provide a sufficient estimation of the phenomenon at arbitrary
(unobserved) positions (in space and time) at lowest possible costs.

But in the view of the vast diversity of applications and associated require-
ments, how should a monitoring be carried out for the concrete case? How can
a particular phenomenon be characterized and what consequences does this
have for the configuration of the sampling and the whole monitoring process?
What are the means to come to well-reasoned decisions in this context? What
are the costs for the monitoring? Is there a way to continuously increase qual-
ity and efficiency of the monitoring process on a systematic basis? These are
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the fundamental questions that are addressed by this work.

1.2 Main Challenges and Contributions

Numerous methods can be used to interpolate a continuous field from a set
of discrete observations. Generally, there are two principles by which a field
can be interpolated from observations: (1) fitting deterministic functions to
the observations and (2) assessing their statistic properties and incorporating
them into the model. Depending on the phenomenon at hand, a combination
of both methods can also be indicated.

This work focuses on the second variant of spatio-temporal statistics or
geostatistics (the term is used synonymously here), since its methods are widely
accepted and applied and in many cases provide the best results when dealing
with continuous phenomena.

The main objectives of this work are (1) to estimate the sufficient sampling
density for a given phenomenon and (2) to test different variants of meth-
ods and parameter settings of the interpolation. A framework for systematic
variation of these factors in order to evaluate them according to several per-
formance indicators is introduced. It is designed for continuous improvement
of the overall efficiency of the monitoring process.

In the context of monitoring continuous phenomena there are many chal-
lenges concerning the associated tasks of observation, transmission, processing,
provision and archiving. There has been and there is continuous progress with
respect to increasing hardware performance and decreasing costs. Also, the
algorithms associated with monitoring become more powerful and mature.

Many studies exist concerning the processing of concrete datasets of sensor
observations in order to derive a continuous field. There is also a vast number
of works dealing with the theoretical foundations of geostatisics, although the
consideration of spatio-temporal modelling is still not very common in this
context [Cressie and Wikle, 2011, Gräler et al., 2016].

What is missing in the author’s viewpoint is a systematic examination and
evaluation of the process of monitoring as a whole. The intention of the frame-
work introduced here is to support an iterative calibration of the used process
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model. Since diverse performance indicators are provided with each variant of
a simulation, the whole process chain can be regarded as “closed loop” where
input data and parameters can be related to the output quality [Sun and Sun,
2015, p. 9]. Continuous learning about and improvement of the monitoring
process is thus facilitated [Box and Draper, 2007].

The framework presented in this work covers the entire workflow of a sim-
ulated monitoring using kriging as interpolation method. Each step of this
workflow is listed below. The specific contribution of this work to each partic-
ular step is added if present.

1. Random field generator The central theme of this work is the investi-
gation of environmental phenomena which can be regarded as continuous
in space, time or space-time like temperature, air pollution, radiation
etc. The strategy for sampling has to consider the dynamism of the phe-
nomenon and at which level of detail this dynamism has to be captured.
So one fundamental question for sufficient observation is how dynamism
is related to the minimum sampling density that is necessary to capture
it adequately.

The spatio-temporal dynamism of a continuous random field is controlled
by the moving average filter that is used to generate it. All subse-
quent process steps, starting with sampling, can be tested systematically
against changed initial conditions according to this dynamism. The gen-
erality of the applied models and approaches can thus be corroborated
[Gigch, 1991, p. 62].

2. Sampling The critical nexus between the phenomenon itself and its
model is established by sampling. The density of the sampling determines
at which granularity level the phenomenon is captured. Too sparse sam-
pling can never yield the true character of the observed phenomenon no
matter how sophisticated the interpolation is. The geostatistical parame-
ter range is an indicator for the dynamism (in space, time or space-time)
and therefore also determines the minimum necessary sampling density.

In this work a formula is deduced from signal processing that estimates
the minimum necessary sampling density from given range parameter
or parameters. The approach is evaluated experimentally. It provides
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an objective estimation of the necessary sampling density for a given
phenomenon and thus makes different observational settings comparable
in principle. Another important issue concerning observational data is
their efficient transmission and archiving. A compression algorithm is
proposed that is designed for this data structure and capable of progres-
sive retrieval.

3. Experimental variogram The experimental variogram expresses how
sensor observations are actually correlated with respect to their spatial,
temporal or spatio-temporal distances. For each possible pair of observa-
tions, this distance is related to the corresponding semivariance, which is
the squared and halved difference between the measured values. A plot of
this relation already conveys an impression of the statistical behaviour of
the observed variable with respect to correlation that depends on spatial,
temporal or spatio-temporal proximity. The experimental variogram is
a prerequisite for subsequent geostatistical analysis.

4. Aggregation of the experimental variogram To be applicable for
interpolation by kriging, the experimental variogram generated by the
previous step needs to be represented as mathematical function. The
parameters of this function are fitted to the empirical data. Since the
number of points of the experimental variogram grows by n2−n

2
for n ob-

servations, the fitting procedure can become expensive even for moderate
amounts of data.

The aggregation of variogram points is one approach to cope with this
problem. Such aggregation is usually carried out by a regular partitioning
of the region populated by points of the experimental variogram. In this
work, the process is carried out with respect to the statistical properties
of the point set that is to be partitioned. Different variations of this
approach are tested.

5. Fitting of the theoretical variogram function With only the aggre-
gated points instead of all variogram points, the fitting procedure can be
executed with much less computational effort. The Gauss-Newton algo-
rithm is often used to minimize the residuals of the aggregated points
from the function by adjusting its parameters iteratively [Sun and Sun,
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2015, Schittkowski, 2002]. By introducing weights, the points repre-
senting low distances can be given more influence, which is a reason-
able strategy here because bigger distances also tend to be less reliable
for parameter estimation due to higher dispersion. Different weighting
strategies are tested and evaluated in this work.

In order to make the estimation of optimal parameters by the Gauss-
Newton algorithm more robust, starting values for the optimization are
deliberately chosen from an n-dimensional grid within quantile borders
of each dimension. This alleviates situations where the Gauss-Newton
algorithm does not converge or finds several local minima.

6. Interpolation by kriging Given the parameters derived from the var-
iogram fitting, the interpolation can be performed at arbitrary positions
and therefore also for arbitrary grid resolutions to fill spaces between
observations. As a statistical method, kriging provides unbiased esti-
mation of minimum variance [Cressie, 1990, Webster and Oliver, 2007].
Beside the value itself, kriging also provides the estimation variance de-
rived from its position relative to the observations it is interpolated from
[Meyers, 1997, p. 464], [Osborne et al., 2008].

The kriging variance is a unique feature and can be exploited for several
purposes. In this work it is used as weighting pattern when merging
several raster grid models. The computational effort for kriging can be
reduced when subsets of observations are processed and merged sequen-
tially. Merging can also be used to seamlessly integrate new observations
into existing models. This is crucial when a (near) real-time model of
the phenomenon has to be provided.

7. Performance assessment Because the reference model that is observed
is synthetic and can be created at arbitrary resolution, the deviation of a
model derived from sampling and interpolation can be calculated exactly.
When this derived model is provided at same extent and resolution as
the reference model, the root mean square error (RMSE) can be calcu-
lated easily. This value is the key indicator for the simulation because
it expresses the overall quality of the monitoring process [Goosse, 2015].
Algorithmic variants and parameter adjustments will affect this value
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and can therefore be used for iterative optimization [Gigch, 1991]. Other
performance indicators like computational effort can also be improved
this way.

The operational steps listed above constitute the components of a monitor-
ing environment that derives raster grid models from discrete observations of
continuous phenomena. It is designed to systematically vary and evaluate dif-
ferent methods and parameter settings of the monitoring in order to iteratively
increase efficiency.

Efficiency in this context can be defined as the relation between the expenses
necessary to operate a monitoring system and the quality of the model derived
from observation and interpolation.

In order to express and systematically evaluate this efficiency, the following
aspects of a monitoring scenario need to be quantified:

• extent and dynamism of the phenomenon
• sampling effort
• computational effort
• model quality

These issues above are interdependent. When planning a monitoring sys-
tem, the first task is to define the extent and to estimate the dynamism of the
phenomenon to be observed. The second task is to decide about the necessary
granularity and accuracy of the model to be created by the monitoring. Given
adequate knowledge about these two conditions, the monitoring system should
be designed to sufficiently mediate between them [Beven, 2009, p. 6].

It is up to the decision makers to choose the hardware and software that
is appropriate under the given circumstances. The present work is intended
to provide methods and tools to support this aim with approaches that can
be corroborated experimentally. Continuous efficiency gain concerning the
ratio between used resources and achieved accuracy can thus be facilitated.
Following the idea of a closed loop as also propagated in [Sun and Sun, 2015,
p. 9], the guiding principle of this work is depicted in Figure 1.1.
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Figure 1.1: General principle of evaluation of monitoring

The schema basically represents the two leading policies that are applied
in this work to foster methodological improvement in monitoring continuous
phenomena:

1. Circularity of the monitoring process: The simulated sampling is
carried out on the synthetic reference model. The derived model is gen-
erated by kriging interpolation of these samples. When the reference
model is given with arbitrary accuracy, as is the case for a synthetic
model, the deviation between the derived model and the reference model
can be determined exactly.

2. Systematic variation of methods and parameters and evalua-

tion of output indicators: The monitoring process as a whole can
be configured by various methods and parameters. Namely, these are
the density and distribution of observations, the applied interpolation
algorithms with their associated settings and also the computational re-
sources used. Variations of these factors will more or less affect the
output indicators.
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Given this generic framework, continuous improvement of the applied meth-
ods and parameters can be fostered. Quantitative evaluation of the monitoring
quality and efficiency can be carried out by appropriate indicators for accu-
racy and computational effort. In combination with a model of the available
computing resources, this effort can be concretised in terms of time and en-
ergy. Beside storage space, these are crucial constraints especially for large
models, (near) real-time systems and wireless sensor networks and should be
considered carefully.

The main challenge of this work is to furnish this general framework with
methods, parameters and indicators that are appropriate to optimise the task
of monitoring continuous phenomena given limited observations and resources.

The remainder of the thesis is structured as follows:
In Chapter 2, the properties of continuous phenomena which are the subject

of investigation of this work, are characterized. A general overview of common
interpolation methods is also given here.

Beyond observation and interpolation of such phenomena, the process of
monitoring entails many technical and also organizational issues that need to
be considered in a real scenario. These will be covered in Chapter 3.

The statistical interpolation method used in this work, namely kriging, will
be described in more detail in Chapter 4.

On this basis, a system architecture for monitoring continuous phenomena
is presented in Chapter 5. It addresses the problems worked out in the previous
chapters and is designed to systematically and iteratively improve the efficiency
of the monitoring process as a whole.

An experimental evaluation of the proposed concepts is carried out in Chap-
ter 6 before conclusions are drawn in Chapter 7, where also a general perspec-
tive on the future development of monitoring systems is sketched out.



10



Chapter 2

Continuous Phenomena
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2.1 Observing and Interpolating Continuous Phe-

nomena

Continuous fields can serve as an appropriate model to describe a variety of
phenomena. In fact, most environmental variables are continuous [Webster
and Oliver, 2007, p. 57]. Therefore, methods and tools to handle continuous
fields are common in many subject areas [Cressie, 1993, p. 11], [Armstrong,
1998, p. 1], [Ma, 2007], [Chiles and Delfiner, 2012]. Some of them are listed
below without any claim of exhaustiveness:

• agriculture and soil science
• astronomy
• climatology and meteorology
• ecology (flora and fauna)
• environmental science
• fishery
• forestry
• geology
• hydrology and hydrogeology
• medicine
• mining and petroleum engineering
• pollution control
• public health
• remote sensing
• social geography

The reason for this diversity is that the principle of a continuous field is so
universal [Kuhn, 2012, Couclelis, 1992]. Yet, the methods for handling obser-
vational data about these phenomena are still evolving. Unlike imagery data
where the output product is usually of similar resolution as the observation
itself—e.g. when carried out by CCD sensors—, the sensor data that provide
discrete values at particular positions in space and time have to be handled
differently [Camara et al., 2014, Liang et al., 2016, Couclelis, 1992]. Although
the resulting data type—for an easy interpretation by humans as well as by
machines—may in fact be discretised as raster grid, this does not at all imply
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an analogy of the acquired data.
For sensor data registered by regional stations there is a substantial gap to

bridge between the original observations and the format required for reasonable
interpretation or analysis. This has several impacts on the way such data need
to be treated in terms of accuracy, coverage and interoperability:

Accuracy When dealing with grid data from remote sensing, errors can be
caused by the sensor itself, by atmospheric effects or by signal noise [Mertins,
1999]. There might also be effects to consider caused by pre-processing the
data or resampling it to a different resolution in space and time. Excluding
systematic trends, the accuracy of the raster cells is more or less homoge-
neous. In contrast to that, for a grid derived from interpolated observations of
regional stations, the confidence interval will vary significantly depending on
the distances of each interpolated grid cell to the observations surrounding it.

Coverage When a region is to be monitored, beside its extent also the ob-
servational density has to be considered for both space and time. Unlike for
remote sensing [Sabins, 1996], where ground resolution is already an intuitive
metric, for interpolation it is necessary to relate the dynamism of the phe-
nomenon to the sampling density (see Section 5.3.2) in combination with the
quality and appropriateness of the interpolation method and its parameters
(see Section 5.3.4 and 5.3.5).

Interoperability For visualization and analysis that involves other spatio-
temporal referenced data, appropriate formats and interfaces have to be pro-
vided to access the field data. In this context, a high level of abstraction is a
prerequisite for interoperability [Zeigler et al., 2000, p. 30]. Querying a variable
at arbitrary positions in space and time can be seen as the most basic function
here [Craglia et al., 2012]. It can easily be extended to a grid-based structure
which directly supports visualization and analysis. On a more sophisticated
level, regional maxima or average values or other types of aggregation can be
provided. A general concept for the definition of such queries should precede
a syntactical specification of formats or interfaces.

Given these properties of interpolated data, it might appear reasonable to



14

prefer imaging techniques like remote sensing to stationary observations. A
coverage of the area of interest by a raster grid that directly reflects the ac-
quiring method and provides homogeneous accuracy is certainly advantageous.
Unfortunately, such observations are often unavailable, too expensive or just
not applicable to the particular problem. For these situations, interpolation
is the only way to provide a gapless representation of the sparsely observed
phenomenon. This is the method this work focuses on.

For environmental monitoring, variables like wind speed, precipitation, tem-
perature or atmospheric pressure can be observed by weather stations. The
sparsity of the observations according to space and time necessitates reasonable
estimations of the value at unobserved positions. There are two general princi-
ples for interpolation to provide them: determinism and statistics [Agterberg,
1974, Isaaks and Srivastava, 1990, Webster and Oliver, 2007]. Deterministic
approaches align parameters of mathematical functions to observations while
statistical ones assume the observed phenomenon as a realization of a random
process that is autocorrelated according to spatial, temporal or spatio-temporal
distances of observations.

But regardless of the method used for interpolation, the structure of the
observational data itself requires particular techniques to make it valuable for
interpretation. Whittier et al. suggest the structure of a space-time cuboid
on which sliding windows queries can be performed [Whittier et al., 2013]. A
spatio-temporal interpolation is performed for each cell that is not covered by
an observation. The structure resulting from this process can be interpreted
as a three-dimensional grid or movie.

A more abstract approach is introduced in [Liang et al., 2016]. A specific
data type to manage observational data about continuous phenomena is de-
fined at a conceptional level. The general idea is to store observational data
in a standardized way and to select the interpolation method when retrieving
the data. So instead of generating and storing interpolated data as additional
grid dataset that has to be managed separately, the method integrates obser-
vations, interpolation and derived data to one coherent model. Thus, derived
grids might be generated immediately with new observations or just on de-
mand when the region is queried. Also mixed strategies are possible here since
the management of the data can remain totally transparent to the user or
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application when using an appropriate query language for field data types.
The vision of such an integrated mechanism for field data is yet far from

interoperable realization in available systems, although it appears to be a su-
perior concept. There is still plenty of work to be done in terms of standard-
isation of naming and implementation of interpolation methods. At least the
most frequently used interpolation methods should simply be called out by
query parameter and provide identical results from different systems. Since
spatio-temporal interpolation is a very complex process with an immense di-
versity of methods, variants and parameters [Li and Heap, 2008] that is still
continuously growing and evolving, this will be a challenging objective. Nev-
ertheless, in the long run it will be necessary to delegate this specific task to a
basic infrastructure service component (e.g. a data stream engine [Gama and
Gaber, 2007]) to unburden higher-level applications from this complexity. A
similar development has taken place for geometries that are stored in database
management systems [Brinkhoff, 2013].

Without claiming completeness, a list of commonly used interpolation meth-
ods is provided in the next two sections which are named by the most general
classification dichotomy: deterministic vs. statistical, or rather, to be more
specific, geostatistical methods. Approaches that combine both principles will
be covered briefly in the subsequent section.

2.2 Deterministic Approaches

There are various interpolation methods that do not take into account the ran-
dom character of the observed field and are therefore classified as deterministic
[Webster and Oliver, 2007, Li and Heap, 2008]:

Voronoi polygons or Thiessen polygons tessellate a region into polygons
so that for each position within a polygon one particular observation is the
nearest one. All these positions share the exact value of that observation. As
a consequence, there are sudden value steps—discontinuities—at the borders
between those polygons, which restricts the scope of application.
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Triangulation provides a surface without “jumps” of value by filling the
space between three observational points with tilted triangular plates. It has,
though, abrupt changes in gradient at the triangle edges.

Natural neighbour interpolation is based on Voronoi polygons. It ex-
tends the concept by introducing weights that are proportional to the inter-
section areas between the Voronoi polygon of the point to be interpolated and
the ones of the neighbouring points. In contrast to the preceding approaches,
it provides a continuous surface.

Inverse distance weighting presumes that the influence of an observation
on the interpolation point is decreasing with increasing distance. This decrease
is expressed as the inverse of the distance with an exponent bigger than zero.

Trend surfaces defined by mathematical functions are another way to rep-
resent continuous fields. The functions’ parameters are fitted to the obser-
vations by regression. With increasing number of observations this approach
becomes numerically fragile and the residuals at the observed positions tend
to be autocorrelated.

Splines can also be used to create continuous surfaces. They are based
on polynomial functions, but there are multiple instances of them which are
locally fitted in a way that they join smoothly.

In summary, deterministic in the context of interpolation means that there is
some particular law by which the continuum of a value can be determined.
Just as phenomena that are described by Newton’s physical laws, there is no
consideration of randomness [Popper, 2002]. The parameters of these deter-
ministic laws or functions are fitted to actual data, but randomness is not
incorporated into the interpolation method. An estimation of variance for the
interpolated value can thus not be provided.

Deterministic methods only rarely represent the nature of the environmental
phenomenon in a sufficient way. There are usually many complex physical
processes involved to produce the particular phenomenon [Webster and Oliver,
2007, p. 47]. Because it is impossible to keep track of all of them, it is often



17

reasonable to regard them as one random process [Isaaks and Srivastava, 1990,
p. 196 ff.]. This approach will be discussed in the next section.

2.3 Geostatistical Approaches

In contrast to deterministic methods, geostatistical methods do take into ac-
count the stochastic nature of the phenomenon at hand. The geostatistical
method of kriging determines the interpolation value of minimum variance
with respect to the covariance structure expressed by the variogram. It should
be the first choice wherever the observed phenomenon is, at least approxi-
mately, a stationary random process.

Stationarity means that the statistical properties of a process are invariant
to translation [Cressie and Wikle, 2011, p. 34]. While first-order or strong
stationarity implies that all statistical moments remain constant, second order
or weak stationarity only encloses mean, variance and the covariance func-
tion. Intrinsic stationarity reduces the conditions to the consistency of the
variogram with the data [Webster and Oliver, 2007, p. 268 f.]. Actually, the
interpolation of intrinsic phenomena can be carried out using the same kriging
system [Armstrong, 1998, p. 90]. Strong stationarity is rather a matter of
theory and even weak stationarity is not a prerequisite for kriging in practice
[Cressie and Wikle, 2011, p. 323].

Hence, formal geostatistical concepts like stationarity should not be overes-
timated according to their practical value. Real world conditions only rarely
satisfy theoretical considerations and any model “can he considered false if
examined in sufficient detail” [Beven, 2009, p. 38].

Nevertheless, with its wide range of variants and parameters kriging provides
a sophisticated toolset to adapt to a large variety of phenomena. Within
geostatistics, kriging is the most important method, or, as pointed out in
[Cressie, 1990, p. 239]:

The use of the word “kriging” in spatial statistics has come to
be synonymous with “optimally predicting” or “optimal prediction”
in space, using observations taken at known nearby locations.
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Or, as stated in [Appice et al., 2014, p. 51]:

[...] kriging is based on the statistical properties of the random
field and, hence, is expected to be more accurate regarding the
general characteristics of the observations and the efficacy of the
model.

Its superiority compared over other methods is also emphasized in [de Smet
et al., 2007]:

Of the studies that intercompared methodologies (Bytnerowicz
et al. 2002), kriging was objectively shown to give the best results.

The expressive power of kriging has also made it popular in machine learn-
ing, where a generalization of the method is known as Gaussian process regres-
sion [Rasmussen, 2006, p. 30], [Sun and Sun, 2015, p. 351], [Garnett et al.,
2010].

In contrast to deterministic approaches, geostatistic methods incorporate
the random nature of a phenomenon by introducing the concept of the region-
alized variable, which is characterized by following equation:

Z(x) = m(x) + ε′(x) + ε′′(x), (2.1)

where m(x) represents the structural component or trend, ε′(x) is the auto-
correlated random term and ε′′(x) is the uncorrelated random noise [Burrough
et al., 2015, p. 172].

Kriging exploits the character of the stationary variable to provide unbi-
ased estimations of minimum variance [Webster and Oliver, 2007, Cressie and
Wikle, 2011].

As already mentioned, stationarity, or more precisely, second-order station-
arity, implies constant mean, variance and covariance function, or, as Lantue-
joul puts it more concretely in [Lantuéjoul, 2002, p. 24]:

• there is a finite mean m independent of x
• the covariance between each pair is finite and only depends on the
pair’s distance
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The covariance function is thus specified as the central geostatistical concept
by which the variance between value pairs is expressed as a function of dis-
tance. In most cases, this correlation decreases with increasing distance. This
explicit rule of autocorrelation is applied when the degree of contribution of
each single observation to an interpolation is estimated by an optimal weight.
The optimal weight estimation itself is a linear regression problem [Oliver and
Webster, 2015] with the associated solution of matrix inversion and therefore
of comlexity O(n3) [Cornford et al., 2005, Barillec et al., 2011], [Gelman et al.,
2014, p. 503].

Whereas the optimal weight estimation is influenced by the observational
values themselves, the kriging variance is only determined by the covariate
structure expressed as covariance matrix at the interpolation point [Guestrin
et al., 2005, Garnett et al., 2010]. It expresses the degree of uncertainty or
variance that can be expected from the relative positioning of the interpo-
lation point towards the observational points used for interpolation. This
kriging variance is a crucial information in the context of a setting where
(spatio-temporal) autocorrelation is empirically investigated and expressed by
the covariance function.

Beside the estimation of uncertainty at a particular position, the krig-
ing variance can be used for sampling configuration and adaptive sampling
[Walkowski, 2010, Guestrin et al., 2005, Garnett et al., 2010]. In this work,
the kriging variance is used to merge sub-models in order to improve per-
formance or to provide a continuous update mechanism for (near) real-time
environments (see Section 5.4.2).

Notwithstanding the sheer overwhelming variety of kriging variants, this
work sticks with the basic version of the method known as simple kriging
[Cressie and Wikle, 2011]. Furthermore, neither noise (nugget effect, see
[Cressie and Wikle, 2011, p. 123], [Webster and Oliver, 2007, p. 81]) nor vari-
ation of semivariance with direction (anisotropy, see [Burrough et al., 2015, p.
181], [Cressie and Wikle, 2011, p. 128]) are considered in favour of the more
general aim of systematic variation and evaluation of methods and parameters.
However, the still rather exceptional aspect of temporal dynamism of the phe-
nomenon [Cressie and Wikle, 2011, Gräler et al., 2012, Gräler et al., 2016] is
covered by applying the associated spatio-temporal covariance functions (see
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Section 4.3).

2.4 Mixed Approaches

On a conceptional level, the dichotomy between deterministic and stochastic
methodologies is helpful for a thorough understanding of different approaches.
In practice, however, the observed phenomena appear as manifestations of
both principles, as pointed out in [Agterberg, 1974, p. 313] for the realm of
geology:

It is important to keep in mind that trend surfaces in geology
with residuals that are mutually uncorrelated occur only rarely.
More commonly, a variable subject to spatial variability has both
random (or stochastic) and deterministic components. Until re-
cently, there were two principle methods of approach to spatial
variability. One consisted of fitting deterministic functions (as de-
veloped by Krumbein and Whitten), and the other one made use
of stationary random functions (Matheron and Krige).

In geostatistics, this issue is today addressed by modelling a deterministic
trend, as is the case with universal kriging [Tonkin et al., 2016], [Burrough
et al., 2015, p. 186], [Oliver and Webster, 2015, p. 85].

A fusion of deterministic and statistic approaches appears to be a general
trend [Chiles and Delfiner, 2012, p. 10]: “The current trend in geostatistics
is precisely an attempt to include physical equations and model-specific con-
straints.” Or, as expressed in [Poulton, 2001, p. 192]: “Practical methods may
be the joint application of deterministic and statistical approaches.”

Generally, the distinction between deterministic and stochastic effects is one
of the most fundamental problems of science [Popper, 2002]. In the context of
environmental monitoring, however, it is not of decisive importance whether a
particular phenomenon is predominantly seen as the result of deterministic or
stochastic processes. Rather, the monitoring process should be evaluated by
the quality of the model it derives from the available observations.
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A simulation environment is a powerful tool to systematically perform such
evaluation because it provides full control over the phenomenon model, the
sampling and the parameters, and principally unlimited knowledge about the
quality and efficiency of the simulated monitoring process, as will be outlined
in the next section.

2.5 Simulation

Depending on the subject area, the term simulation can have different mean-
ings and therefore different prerequisites. As pointed out in [Pritsker, 1998, p.
31], a simulation is based on a model, which is an abstracted and simplified
representation of the system under investigation. Predicting the dynamic be-
haviour of such a model given its initial conditions is then called simulation.
Likewise, in [Birta and Arbez, 2007, p. 3] the central characteristic of “be-
haviour over time” is identified or, as expressed in [Banks, 1998, p. 3]: “[the]
imitation of the operation of a real-world process or system over time.”

Simulation has a wide area of applications. Wherever a system is too
complex to be described analytically—which is the case for most systems of
interest—, its behaviour can be simulated given the laws and initial conditions.
Depending on the goal of the modelling and simulation, a system can be in-
spected on different levels of knowledge and complexity [Zeigler et al., 2000,
p. 13].

The scope of modelling and simulation is by far wider than the one cov-
ered by this work. It can be applied to investigate problems of production,
healthcare, military, customer behaviour, traffic etc. to name just a few [Law,
2014, Banks, 1998, Zeigler et al., 2000]. The focus here, however, lies on en-
vironmental phenomena considered to be continuous in space and time. A
thorough reflection of the role of modelling and simulation in this context is
given in [Peng et al., 2001, p. 9]:

A well-tested model can be a good representation of the en-
vironment as a whole, its dynamics and its responses to possi-
ble external changes. They can be used as virtual laboratories in
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which environmental phenomena can be reproduced, examined and
controlled through numerical experiments. Environmental models
also provide the framework for integrating the knowledge, eval-
uating the progress in understanding and creating new scientific
concepts. Most importantly, environmental modelling provides the
foundation for environmental prediction. Environmental models
are useful for testing hypotheses, designing field experiments and
developing scenarios.

Within this work, the term simulation can be applied to two major issues
of the monitoring scenario:

1. The continuous random field representing the spatio-temporal dy-
namism of the phenomenon

2. The density and distribution of observations carried out on that ran-
dom field

It could be argued that for purely spatial random fields and the associated
observations there is no dynamism at all. Therefore, such a scenario can hardly
be called a simulation. On the other hand, the consideration of the tempo-
ral dimension would fulfil the prerequisite for a simulation while it would not
change the monitoring process in principle but just bring in one more dimen-
sion. Furthermore, unlike for Monte Carlo methods [Robert and Casella, 1999]
which can be assigned to the domain of numerical analysis rather than simu-
lation [Birta and Arbez, 2007, p. 13], continuous random fields are generated
to represent real phenomena instead of pure mathematical models. They sim-
ulate processes like sedimentation, erosion, diffusion, etc. which in effect are
so complex that they can be seen as stationary random.

A more general classification schema for simulation methods is given in
[Law, 2014]. It allows for categorization by the following three dimensions:

• static vs. dynamic
• deterministic vs. stochastic
• continuous vs. discrete
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This list is complemented with linear vs. nonlinear by [Aral, 2011, p. 44
ff.], which is only relevant for very simple models. Some more elements are
added to this list of dichotomous pairs of models in [Jorgensen, 1994, p. 28
ff.]. They are not considered relevant here.

The classification of the simulations carried out in this work is not without
ambiguities when using such schemata. So the synthetic continuous random
field can be seen as static in time, but only when just spatial dimensions are
generated. While the field can be seen as continuous—although discretised to a
raster grid—, the observations, being part of the simulation, represent discrete
events in space-time. These events can either be carried out deterministically
by following an observation plan or stochastically by scattering them randomly
in space and time. So it can be said that the concepts and categorizations
for general simulation do not necessarily apply to the realm of continuous
environmental phenomena.

When shifting to the domain of geostatistics, continuous fields are regarded
as realizations of random processes [Cressie, 1993]. Describing such a process
by a statistical model and realizing it with a computer is actually called sim-
ulation [Lantuéjoul, 2002], or, as expressed by [Webster and Oliver, 2007, p.
268]:

In geostatistics the term ’simulation’ is used to mean the cre-
ation of values of one or more variables that emulate the general
characteristics of those we observe in the real world.

There are generally two variants of simulating continuous fields: uncondi-
tional and conditional [Lantuéjoul, 2002, Webster and Oliver, 2007]. When
carrying out unconditional simulation, the main interest is to create a random
field with properties of a particular covariance function. No further constraints
are laid on the realization.

In contrast to that, the idea behind conditional simulation is to create such a
random field through a set of real or fictitious observations. Those observations
keep their values in the simulated realization whereas for the positions between
them, the random values will be generated with respect to the associated
covariance function [Lantuéjoul, 2002].

Alternatively, one could also think of just applying kriging interpolation to



24

those observations. But while kriging provides estimates of no bias and mini-
mal variance, the dispersion of the phenomenon is not necessarily represented
by it [Webster and Oliver, 2007, p. 271]. So the simulation is to be preferred to
interpolation when the overall statistical character of a field is more important
than the best possible estimation (no bias, minimal variance) at each position.

Technically, there are several methods to create such random fields. Proba-
bly the most popular is the lower-upper (LU) decomposition of the covariance
matrix. It has the disadvantage that for n grid cells there is a matrix of di-
mension n2× n2 to be decomposed. This can exceed computational capacities
even for moderate model sizes.

Beside this method, sequential gaussian simulation, simulated annealing and
turning bands as are entitled simulation techniques by [Webster and Oliver,
2007].

Dilution, tessellation, spectral and turning bands are listed as methods for
generating continuous random fields in [Lantuéjoul, 2002].

The approaches above are either limited in their field of application or do
lack cohesion between the generated field and the covariance function.

In contrast to that, the moving average filter provides a flexible and intuitive
way to generate a random field representing a particular covariance model.
The concept is analogous to spatial filtering in signal processing [Gonzalez
and Woods, 2002, Stoica and Moses, 2005]. The filter is applied to a field
of independent and identically distributed values (pure Gaussian noise). The
output value of each grid cell is a weighted average of the corresponding cell
and its surrounding cells in the input grid, whereas the weight is decreasing
with increasing distance from the target grid cell. The process is repeated for
each grid cell and can be imagined as a moving filter, mask, kernel, template
or window [Gonzalez and Woods, 2002, p. 116]. The weighting scheme of such
a kernel determines the autocorrelation structure of the output random field
and can be derived from an appropriate covariance function (see Section 5.3.1).

Oliver analytically derives kernels for moving average filters for the most
common covariance functions (spherical, exponential, gaussian) in [Oliver,
1995]. When applied as filter on Gaussian random fields, those kernel functions
produce continuous random fields which are compliant with the covariance
functions the kernels were derived for.
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In this work, however, there is no mathematical rigorous derivation of the
covariance functions used to define the kernel of the filter. Consequently, the
continuous random fields that are generated using these functions as kernel
filters do not fulfil the conditions of stationarity in the strict sense. Due to
the generation process they are, however, random, spatio-temporally autocor-
related and isotropic.

The relationship between the covariance function of the kernel filter and
the one of the resulting field is analytically demanding [Oliver, 1995] and be-
yond the scope of this work. But since real world phenomena do not obey
formal statistical considerations either, we neglect this rigour here and focus
on the methodological approach for continuous improvement of the monitoring
of continuous phenomena as a whole.

2.6 Summary

Continuous phenomena are ubiquitous in our environment and their monitor-
ing and analysis are common tasks for many disciplines. The main challenge is
to choose sampling schema and interpolation method in order to generate an
appropriate model of the phenomenon. For many natural phenomena there is
continuity in both space and time. The dynamism in each of those dimensions
should be captured according to the monitoring objectives.

There is a manifold of methods to interpolate between discrete observations
of a continuous phenomenon. The geostatistical method of kriging considers
the observed phenomena as a random process with a particular autocorrelation
structure. Being a powerful method of high adaptivity, it can incorporate
complex correlation structures, deterministic trends as well as anomalies like
anisotropy. One key feature of kriging is the uncertainty estimation. It is
exploited in this work for sequential merging of sub-models.

Regardless of the interpolation method that is applied, it is helpful to con-
sider the idea of a field data type as general abstraction concept [Camara
et al., 2014, Liang et al., 2016, Cova and Goodchild, 2002, Couclelis, 1992].
A monitoring system can thus be seen to mediate between discrete sensor ob-
servations and a continuous field that represents the phenomenon of interest.
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The discrepancy between this phenomenon and the derived field representation
expresses the quality of a monitoring process. With the help of a synthetic con-
tinuous random field this performance metric can be used to guide continuous
improvement of quality and efficiency of the whole monitoring process.
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3.1 Overview

The monitoring of continuous phenomena like temperature, rainfall, air pollu-
tion etc. is carried out by (wireless) sensor networks today. From the perspec-
tive of the user of such data, the original discrete sensor observations are not
very useful since they often do not cover the spatio-temporal area of interest.
So the fundamental task in this context is to provide a gapless and continuous
representation of the particular phenomenon either as visualisation in real time
or as model for long term archiving, or both. Therefore, it is necessary to cover
the area of interest with observations in a way that is sufficient to capture the
phenomenon (see Section 5.3.2). The necessary density of observations de-
pends on the dynamism of the phenomenon; for spatio-temporal monitoring
this has to be considered for both space and time. From these observations,
the value of the particular phenomenon needs to be estimated for unsampled
spatio-temporal positions.

Monitoring as a whole can be seen as an optimization problem or trade-off
between spent resources and achieved model quality, as stated in [Cressie and
Wikle, 2011, p. 26]:

Looking at this from another angle, the best scientists collect
the best data to build the best (conditional-probability) models to
make the most precise inferences in the shortest amount of time. In
reality, compromises at every stage may be needed, and we could
add that the best scientists make the best compromises!

Notwithstanding the fact that sensors and computers become cheaper and
more efficient, resources will always remain limited, which constraints the pro-
cess of monitoring to be as efficient as possible.

Essentially, a monitoring system can be seen as a mediator that uses obser-
vations to provide knowledge about the environment that is required by the
society. An abstract model of the phenomenon of interest and a monitoring
system based on this modelling are the components which mediate between
environment and society [Ehlers, 2008].

Figure 3.1 illustrates these very general components of environmental mon-
itoring (environment, model, system, society) with their respective relations
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and interactions (validation, verification, credibility, monitoring, science, ob-
servation, knowledge). Validation, verification and credibility are established
concepts in the field of simulation and modelling (see [Law, 2014, p. 246 ff.],
also [Banks, 1998, Zeigler et al., 2000]).

  

SystemModel

Society

Environment

Monitoring

Impact

Observaton
Protecton

Benefts

Knowledge
Threats
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Figure 3.1: Model and monitoring system as mediator between environment
and society; validation, verification and credibility (inside dashed frame) as es-
tablished concepts from simulation and modelling, monitoring as data feeding
process, and science as social process developing and validating abstract mod-
els. Observation is organized by society in order to gain knowledge, exploit
benefits, avert threats, and protect the environment from hazardous impacts

Whereas validation is about whether the right model was chosen, verification
explores if this model was implemented correctly. The credibility expresses the
degree of acceptance of a particular system solution among its users, consumers
or other stakeholders, while science rather discusses and improves the system-
independent concepts of the underlying models. Validation as its component
contributes to this process.

The superordinate goal of this arrangement is to endow the society with
knowledge about the environment to better exploit its resources (benefits) and
be protected from potentially hazardous processes (threats). In order to gain
such knowledge, the society organizes observations that continuously feed the
system with data (monitoring). This knowledge can be used to identify adverse
human impact and induce protection policies in a fact-based manner.
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This work focuses on continuous environmental phenomena (temperature,
humidity, air pollution, etc.) and provides methods and tools that facilitate
the iterative development of effective and efficient monitoring scenarios.

On a conceptional or interim level, a continuous phenomenon can be repre-
sented abstractly as a field. In order to be easy to interpret by both humans
and information systems, the field needs to be discretised to a raster grid of
appropriate resolution [Beven, 2009, p. 41], [Cova and Goodchild, 2002], which
then becomes the carrier of information about the phenomenon.

Given that the phenomenon, at least in principle, fulfils the criteria of sta-
tionarity [Webster and Oliver, 2007, Cressie and Wikle, 2011, Wackernagel,
2003], the geostatistical method of kriging, among spatio-temporal interpola-
tion methods, is often the best choice to derive such a continuous representation
from discrete sensor observations (see Chapter 2).

However, to generate such a continuous representation of a phenomenon is
a complex calculation process with distinct stages and associated intermediate
results. Each of these stages entails several algorithmic variants and parame-
ters that control its behaviour. In a real monitoring environment, the optimal
methods and parameters for this process usually remain unknown and can only
be estimated by ad hoc heuristics.

In contrast to that, a synthetic continuous random field provides the exact
state of the phenomenon at any position in space and time. Therefore, the
resulting accuracy of any monitoring process (sampling and interpolation) can
always be quantified by the difference between the simulation model and the
model derived from the interpolated observations.

The simulation framework described in this thesis was developed to provide
an environment to systematically test a wide range of algorithmic variants
and parameter settings and inspect their effects on several indicators. Beside
the deviation from the reference model also the actual computational effort
necessary for each variant can be considered. This makes it possible to quantify
and thus compare the efficiency of different approaches. By abstracting the
computational effort of a particular calculation from the used hardware it is
in principle possible to estimate the expenses in time and energy for any other
given computer platform. This can be a critical aspect for wireless sensor
networks, large models and environments with real time requirements.
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But before inspecting its efficiency indicators, the general requirements of
a monitoring system will be listed in the next section.

3.2 Requirements

3.2.1 (Near) Real-Time Monitoring

For many applications it is crucial that the model derived from monitoring is
provided in real time or near real time. This is especially the case when the
observed phenomenon potentially has severe impacts on security or health like
radiation, pollution or heavy rainfall [Aral, 2011]. In all these cases it has to
be ensured that observation, data transmission, generation and provisioning
of the model is carried out in time according to the requirements.

When the model derived from monitoring is to be provided in real time—
e.g. via a web mapping application—one major problem is how to continuously
update it. This is especially problematic where observations are irregularly
scattered in space and time, as is the case for autonomous mobile sensor plat-
forms. In a sensor data stream environment, one might initially consider two
ways to cope with this problem:

1. appending the new observations to the actual set and calculating the
model anew

2. creating subsequent subsets of particular size (e.g. 10 minutes time
slices) with separate disjunct models per subset

The problem with the first solution is that the number of observations will
soon overstrain the computational capacities necessary for model calculation.
The problem with the second solution is to choose an appropriate size of the
time slice: too short intervals will lead to deficient models due to data sparsity.
Too long intervals will on the one hand burden model calculation and on the
other hand undermine the timeliness of the provided model.

Another approach is to not completely replace the previous model by the
one generated from the newest set of observations, but instead merge this new
model with its predecessor. The kriging variance that is—beside the observed
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value itself—available for each grid cell of the model can be used for weighting
when merging two grid models (see Section 5.4.2). A continuous and flexible
update mechanism as necessary for a timely monitoring is thus provided.

The merging algorithm also addresses another requirement of real-time mon-
itoring: coping with heavy computational workload when kriging large datasets
of observations. When numerous observations have to be processed in near
real time, this can become a critical factor even for powerful computing en-
vironments. Therefore, appropriate techniques to reduce the workload of the
complex task of interpolation [Wei et al., 2015, Pesquer et al., 2011, Umer
et al., 2009] are necessary.

3.2.2 Persistent Storage and Archiving

Beside the requirement of (near) real-time monitoring of phenomena, the ac-
quired data, or at least parts of it, will have to be stored permanently for
subsequent analyses and considerations of long-term trends. For real-time
monitoring it is essential to provide a model that is as accurate and up-to-date
as possible under given circumstances and restrictions. The requirements for
long-term storage are even more challenging since a good compromise has to
be found between the following partly conflicting requirements:

• sufficient quality and density
• small data volume
• originality of the data
• consistency
• informative metadata
• quick and intuitive data retrieval
• interoperability

To be beneficial for as many applications as possible, the data should be
stored in spatio-temporal databases with unambiguous spatio-temporal refer-
ence systems [Brinkhoff, 2013].

Which data should be stored depends on the type of application that is
planned for retrieval. Generally, it is advantageous to keep as much of the
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original sensor data as possible (originality). So if knowledge that is unavailable
at the moment of observation—like a large sensor drift—becomes available
after archiving, it can be considered in forthcoming analyses. This is hardly
possible if only the derived data like raster files are stored.

On the other hand, storing original sensor data means additional effort in
the moment of query to provide it in a form that is suited for interpretation or
analysis. So if an (n-dimensional) grid of the observed phenomenon is required,
the original sensor observations will have to be interpolated according to that
grid resolution. Depending on the grid size and resolution and the available
computing power, this might significantly delay retrieval.

When efficient retrieval of processed data is of high priority, it might be the
best choice to permanently store the data (redundantly) in grid format. There
are mature techniques to organize the data management this way. Lossless or
lossy compression can help to reduce necessary storage space [Gonzalez and
Woods, 2002].

Nevertheless, there is a dilemma according to the management of the mon-
itoring data. Whether to store the original vector data or derived raster data
or both has consequences on volume, flexibility, usability, redundancy, consis-
tency, responsiveness, etc. Just as with the process of monitoring as a whole,
an appropriate solution has to be a compromise of multiple objectives in ac-
cordance with the goals. The concept of a field data type [Liang et al., 2016]
is an important milestone on the way to a consistent storage schema for data
about continuous phenomena.

3.2.3 Retrieval

For the retrieval of data, there are different scenarios that are reasonable in the
context of environmental monitoring. As already mentioned, the monitoring
system has the role of the mediator between the available observations and the
required knowledge. It fills the gaps in space and time that necessarily remain
between the available discrete observations. The overall quality of the model
depends on the density of observations and the interpolation method. From
this derived model, data retrieval can be thought of in different modes:
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1. Interpolated points: Values of the variable of interest can be
queried at arbitrary positions in space and time. This mode is ap-
plied when the variable is needed to examine some critical event.
For example, when investigating an increased rate of short circuits of
a particular model series of power inverters, the actual precipitation
at the time and position of each incident might reveal an important
hint. Beside the value itself, the estimation variance—as provided by
kriging—might also be important to judge the situation.

2. Interpolated grids: For visualization or intersection with other
data, some equidistant array of values is often needed. So a time series
of values for every quarter of an hour could be derived from irregular
observations to match the schedule of some other variable to investi-
gate correlations (e.g. air pollution and rainfall). A two-dimensional
grid of interpolated values provides a map of the phenomenon at a par-
ticular moment in time to be interpreted geographically. Adding the
temporal dimension would produce a simulation of the phenomenon
as a movie [Whittier et al., 2013], as known from weather forecasts.

3. Aggregations: In order to get summarized information of a region
of particular extent in space, time or space-time, the interpolated
grid can be aggregated to the required value. The monthly average
value of a pollutant in a particular district is one example of such an
aggregation. It presumes an intersection of the interpolated grids (see
above) with the (spatio-temporal) target feature. Other indicators
like minimum, maximum, median or variance might also represent
valuable information. Such aggregations are predestined as an integral
element of an alert mechanism within the monitoring system.

As these modes above show, the retrieval of data about continuous phe-
nomena has specific characteristics that are not covered by standard GIS func-
tionality. What is needed for interoperability of systems in this context is a
query language that abstracts from the format that the data is actually stored
in. It has to provide formal expressions to describe spatio-temporal reference
grids, their resolution and extent as well as definitions for aggregations, like
monthly average values within a district. With such a query language [Liang
et al., 2016], the client does not have to know about the format of the actual
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data but communicates with the system on a more abstract level.
Additionally, some metadata will also have to be available in order to judge

the appropriateness of the data for the given task. Value bounds, mean value
and variance might be valuable informations for users of the data. On a more
sophisticated level, the variogram can reveal the geostatistical properties of
a dataset. Unambiguous identifiers and standardized formats are needed to
retrieve and process these metadata.

3.3 Resources and Limitations

The description and prediction of phenomena is the central concern of science
[Popper, 2002]. In order to be feasible in practice, only those parts of reality
are considered that are relevant for a particular question or task [Birta and
Arbez, 2007, p. 6], [Sun and Sun, 2015, p. 9], [Law, 2014, p. 4], [Beven,
2009, p. 17], [Gigch, 1991, p. 91]. Such deliberate reduction of complexity
is basically what modelling and simulation is about [Banks, 1998]. According
to the intention (knowledge, safety, ecological and economic benefit, ...), the
models are designed to answer the crucial questions raised within the particular
problem domain.

Monitoring can be seen as as the process that feeds such a model with em-
pirical data in order to align it with reality. The necessary effort for monitoring
depends on the requirements according to coverage and accuracy of the model.
As for any project, the fact of limited resources will put considerable burden
on it. So monitoring strategies will actually be a trade-off between necessary
costs and achievable benefits, whereas neither cost nor benefit can always be
expressed in monetary units. For the costs, there are following aspects to be
considered:

• costs to obtain, install, operate, maintain and depose sensors
• costs for the infrastructure (communication, processing, archiving, pro-

visioning) necessary to keep the monitoring in operation
• human resources (administration, maintenance, adaptation of new tech-

nologies, research, cognitive/mental effort...)
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On the other hand, there are the various benefits made available through
the gained knowledge:

• economic benefits when better predictions result in a more efficient
process of added value (like e.g. for fishery, agriculture, forestry...)

• improved knowledge about our environment as basis of existence for
present and future generations

• improved quality of life through information (forecasts for weather,
pollen drift, air pollution, ...)

• better disaster management (distribution of toxic fumes, radioactiv-
ity)

• governmental healthcare

In this context, science and technology can only try to help to explain phe-
nomena, explore causalities, propose solutions, support their implementation
and monitor their effects. To provide the necessary resources for this task is
the responsibility of society and politics [Beven, 2009, p. 29]. Whether the
efforts go along with the proclaimed aims and values should be continuously
examined carefully. Science itself has to be rigorous and consistent to with-
stand being abused by political or economic interests [Walter, 2011, p. 585 ff.],
[Jaynes, 2003, p. 19]. Otherwise, it will deprive itself of its legitimation in the
long run.

Given these circumstances, the operator or operator team of a monitoring
system needs to carefully balance the input resources against the output bene-
fit. In order to facilitate well-reasoned decisions here, two major investigations
have to be carried out:

1. Learning about the process and its complexity
2. Identifying the questions intended to answer by the monitoring

The fundamental objective of any monitoring system is to find and establish
the link between those two domains in an effective and efficient way. A good
compromise between invested resources and derived knowledge has to be found
[Beven, 2009, p. 11]. In the following, the means and aspects of monitoring
will be listed and discussed according to their limitations.
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3.3.1 Sensor Accuracy

The accuracy of each single sensor measurement obviously affects the over-
all accuracy of the monitoring system. It has to be in accordance with the
requirements of the system and should be specified.

Accuracy is a function of bias and precision [Berthouex and Brown, 1994,
p. 11 ff.], [Meyers, 1997, p. 60 ff.]. Precision expresses the degree of scatter in
the data around a constant value while bias is the deviation of this value from
the true value. Precision is associated with random errors while bias is caused
by systematic errors.

In the context of monitoring systems there can be mechanisms to detect
systematic sensor errors if the data is sufficiently redundant. In such a case,
the sensor can be calibrated in order to produce correct measurements. If such
a sensor error can be determined to first appear at a particular point in time,
all registered measurements since then can be corrected retrospectively. This
is hardly possible for derived data like interpolated raster grids, which might
be an argument to favour field data types (see Chapter 2 and 7).

Yet, the incorporation of the sensor accuracy into the interpolation process
has its own complexity and is not subject of this work. It is assumed that
serious sensor errors are detected and considered by other system components.
Small errors in the observations are generally assumed to be overridden by the
inaccuracy caused by interpolation itself [Parent and Rivot, 2012, p. 9].

3.3.2 Sampling

For the monitoring to be effective, the area of interest has to be covered by an
appropriate set of observations. The sampling density and distribution must
be sufficient to allow an interpolation at unobserved positions in space and
time according to the monitoring objectives. It depends on diverse factors:

• the phenomenon itself and its complexity (e.g. interdependencies with
other variables)

• the quality of the monitoring
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• the requirements of the monitoring (aggregation, reconstruction, archiv-
ing, retrieval, alert, ....)

These factors above are interdependent, which is shown by the following
examples:

• The more complex a process is, the more observations are usually neces-
sary to generate a model that adequately represents its dynamism

• The better the physical processes are understood, the less observations
will eventually be needed to generate an appropriate model

• Changed requirements according to the aims of the monitoring will prob-
ably affect the overall effort that is necessary for the monitoring

The most crucial decision within a monitoring concept is about how the
sampling is to be carried out. Insufficient sampling can not be compensated
by even the most sophisticated interpolation method. So the region of interest
should be covered by enough observations in order to capture the phenomenon
sufficiently. On the other hand, within a monitoring scenario it might be the
most expensive task to establish, operate and maintain the sensor network. So
the other objective is to have as few sensors and observations as possible to
achieve the required quality. To find a good compromise here is maybe the
most important decision of the operator or operator team.

As already mentioned, there are basically two aspects to be decided for each
sampling layout: the number of observations and their distribution. When
assuming a regular pattern with constant point distance to observe a particular
region, the number of observations can be easily determined. A square grid is
often applied, while a hexagonal grid is considered the more efficient variant
[Guttorp, 2001, Chun and Griffith, 2013].

A regular pattern, however, can only rarely be applied because sensor sites
are subject to geographical and infrastructural constraints (e.g. as for mete-
orological stations). The sampling pattern of mobile sensors like vehicles or
drifting buoys changes continuously. Wherever static or dynamic sampling
positions can be assigned freely, a deliberate selection of sampling positions
(static) or active sampling (dynamic) should be considered [Osborne et al.,
2008, Barillec et al., 2011, Guestrin et al., 2005, Walkowski, 2010].
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In this work, however, the sufficient sampling density is estimated for sam-
pling positions that are randomly distributed in the region of interest. It is
reproducible, is easy to generate for any dimensionality and produces a big va-
riety of sample distances, which is necessary for robust variogram fitting (see
Section 5.3.5). A formula that derives this sampling density from geostatistical
indicators will be provided in Section 5.3.2.

3.3.3 Computational Power

Environmental monitoring of continuous phenomena faces limits of computa-
tional power according to following tasks:

Data acquisition Mobile units for processing and transmission have limited
energy and therefore are also limited in their capabilities

Extensive processing Massive observational data, complex interpolation
algorithms and real-time requirements can raise the workload to a critical
level

Due to cheaper sensor hardware and new sources like volunteered data ac-
quisition, the availability of environmental observations is continuously in-
creasing [Havlik et al., 2011, Kuhn, 2012]. Consequently, there is an ever
growing computational workload for processing and analysis. State-of-the-art
computer technology continuously provides more powerful and more energy-
efficient machines. In recent years, increasing computational power is less
achieved by higher clock speed but rather by increasing parallelization using
multiple central processing units (CPU), graphics processing units (GPU) or
field-programmable gate arrays (FPGA) [Liu et al., 2012]. This also affects
software development since algorithms must apply multithreading techniques
to exploit parallel processing architectures [Cormen et al., 2005, p. 772 ff.].

So the challenge for acquisition of environmental data is to use the limited
computational resources as efficiently as possible. There are usually several
degrees of freedom how to perform a monitoring since the associated tasks of
acquisition, processing and transmission can be carried out in different ways
[Gama and Gaber, 2007].



40

For complex calculations that are performed on powerful workstations, servers
or even computer clusters, the focus lies on optimizing algorithms, data struc-
tures and indexing to achieve sufficient performance for processing and re-
trieval.

For both scenarios—data acquisition and complex processing—simulation
can be used to test and evaluate several variants according to their overall
computational efficiency. Therefore, the simulation needs to keep track of the
computational work for each scenario (see Section 6.5). This indicator, among
others, can be used for iterative optimization according to the prioritized goals.

3.3.4 Time (Processing and Transmission)

For many tasks in environmental monitoring, time is a scarce resource. There
are complex analyses that have to be carried out in time in order to be valuable
(e.g. pollution alert systems). Sensor observations need to be transmitted and
analysed immediately to detect dangerous states and to limit damage [Aral,
2011]. More powerful hardware is one way to address this challenge, but it is
not always feasible. Inappropriate costs or limited energy for wireless devices
might be arguments against this option.

Nevertheless, the factor time needs to be considered carefully in such situ-
ations. So there is good reason to be able to keep track of it explicitly. For a
given task, the processing time is basically determined by the workload of CPU
cycles necessary for the task, the CPU clock speed and the number of avail-
able processors. Compiler optimization, operating system and features of the
programming language will also affect performance and should be considered
where necessary.

A generic description of temporal effort therefore has to consider two major
components: (1) a quantification of the workload of a task by the number of
instruction cycles it entails and (2) a formal specification of the performance-
relevant properties of the machine the task is processed on. Leaving aside
parallelization, the time effort for a particular task is basically determined by
the ratio between the cycles of calculation and the CPU clock speed. In most
cases however, the proportion of parallelizable code segments and the number
of processors of the machine have to be considered as interdependent factors
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(see Section 5.5).
For transmission, the data rate and the amount of data to be transmitted

plus communication overhead will determine the necessary time. Compres-
sion and progressive retrieval [Lorkowski and Brinkhoff, 2016] can reduce the
transmission time and consequently the energy expense (see Section 5.4.3).

3.3.5 Energy (Processing and Transmission)

Particularly when tasks like observation, transmission or processing are per-
formed on battery-operated devices, the energy consumption of a monitoring
scenario has to be considered to achieve an efficient use of resources [Kho et al.,
2009]. In a distributed scenario, there are usually several degrees of freedom to
fulfil a monitoring task with respect to how and where to perform the several
operational steps.

A simple example for that is the exchange of data in a sensor network. One
option is to transmit the original data without further processing, the other
is to compress the data before transmission and decompress it after receiving
it. There is significant computational effort for the compression and decom-
pression process, but since wireless data transmission is much more energy
intensive, this method will usually pay off [Appice et al., 2014].

When energy consumption is to be estimated for a particular task, the
number of instruction cycles to be processed is the key indicator, just as it was
for time consumption. And while the CPU clock speed is taken as denominator
when estimating time consumption, we need a factor that quantifies the energy
consumption per instruction cycle here (see Section 5.5).

Similar to the estimation of time, the energy expense can be calculated for
a given constellation of instructions and hardware specifications. Aspects like
parallelization and idle mode energy consumption can make such estimations
more complex.

The problem of energy efficiency in wireless sensor networks has been dis-
cussed extensively in literature [Gama and Gaber, 2007, Kho et al., 2009, Kolo
et al., 2012, Umer et al., 2009, Jin and Nittel, 2008]. When energy consumption
is modelled within a simulation framework as described above, it can be deter-
mined for different monitoring strategies when processing them in simulations.
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This can be of vital importance for wireless constellations.
Data transmission is a critical issue for wireless sensor networks since it

usually consumes much more energy than acquisition and processing of the
data [Gama and Gaber, 2007, p. 79], [Kho et al., 2009]. As already mentioned,
wherever there are multiple feasible scenarios of how to collect, transmit and
process the data for a monitoring, the energy efficient variants should be chosen
particularly for wireless constellations.

The energy demand for data transmission will depend on data volume, hard-
ware, protocol, medium and geometrical constellation of the network. There
is also potential for improvement of efficiency by adaptive configuration of the
transmission process [Lin et al., 2016].

Such optimization should beforehand be carried out with help of a simula-
tion, which presumes that the aspect of transmission is adequately modelled
according to the issues to be considered like geometric constellation or trans-
mission schedules. A closer examination of this problem is not in the scope of
this work.

3.4 Summary

The limitations discussed above are challenging when establishing a system for
environmental monitoring. The responsible actors or decision makers need to
identify and precisely formulate goals and priorities and to deliberately choose
the appropriate devices, methods and configurations to fulfil them. In order to
support this complex task, it is helpful to begin with structuring the problem
on an abstract level [Gigch, 1991]. The very general properties involved when
establishing an environmental monitoring system are: the aims to achieve, the
required quality and the generated costs, as illustrated in Figure 3.2.

All these components need to be considered carefully to establish a moni-
toring system that fulfils the given requirements. Changes in one component
usually will affect the other ones, which is indicated by the connecting lines.
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System

Aims

CostsQuality

Figure 3.2: Superordinate monitoring system properties and their interdepen-
dencies

Each of these superordinate properties entails issues that may or may not
play a role for the particular monitoring task. Some of them are listed below
for each property:

Aims:

• economic benefit
• scientific progress
• foundations for better planning
• political arguments
• environmental protection
• security and healthcare

Quality:

• coverage
• accuracy
• resolution
• availability
• interpretability
• interoperability (standard conformity)
• response time
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Costs:

• infrastructure
• finances
• time
• organizational effort
• cognitive/mental effort
• environmental impact (e.g. stations and their maintenance)

System:

• sensors
• processing units
• (wireless) network
• protocols
• formats
• standards
• methods/algorithms
• parameters
• performance indicators

To bear in mind all of the relevant aspects from the listing above is al-
ready an enormous challenge. The interdependencies between those aspects
massively increase the complexity in a way that solutions usually can only be
found iteratively in an evolutionary learning process [Gigch, 1991, p. 64], [Sun
and Sun, 2015].

In this sense, the intention of this work is to support such iteration concern-
ing the aspects of sampling distribution and density, interpolation algorithms
and associated parameters.

Depending on the phenomenon and the requirements of the monitoring
system, different constellations can be simulated and evaluated by output in-
dicators that express both quality and costs.

The evolutionary process of acquiring new knowledge and improving the
model is supported by the circular design or “closed loop” [Sun and Sun, 2015,
p. 9] of the framework. By using synthetic data as reference, the root mean
square error (RMSE) quantifies the fidelity of the derived model and thus is
the crucial indicator of the monitoring quality [Goosse, 2015, p. 114 ff.].
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Other indicators like computational effort (see Section 5.5.2) are also used.
Variations of methods and parameters can easily be processed in batch mode
using the concept used in Section 5.5. Given the framework that is described
here, it is easy to automatically perform multiple variations of system config-
urations. The application of this general concept will be outlined in this work
after the method of spatio-temporal interpolation is introduced in the next
chapter.
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Chapter 4

Spatio-temporal Interpolation:

Kriging
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4.1 Method Overview

The general properties of the geostatistical method of kriging have already been
introduced in Section 2.3. It assumes a stationary process (in practice however,
only second order and intrinsic stationarity are relevant [Oliver, 1995, Cressie
and Wikle, 2011]) and interpolates between observations by estimating optimal
weights for them while taking into account their correlation according to their
distances. This fundamental relation between the distance and the degree of
correlation of two positions is expressed by the covariance function.

When it is applied to an actual set of observations, the method is funda-
mentally a two-step process [Wackernagel and Schmitt, 2001]:

1. Inspection and mathematical description of the spatial, temporal or
spatio-temporal autocorrelation of a given set of observations

2. Interpolation between the observations with respect to the detected
autocorrelation structure

One might also say in other words: After specifying the rules of autocor-
relation from the given observations, they are applied to estimate the value
between those observations. Unlike the deterministic methods listed in Sec-
tion 2.2, it incorporates the statistical properties of pairs of observations with
respect to their spatial, temporal or spatio-temporal relation.

The inspection of the statistical properties is also carried out in two steps:
(1) the generation of the experimental variogram and (2) the fitting of the
theoretical variogram. Those procedures will be explained in the next two
sections.

The autocorrelation structure of a set of observations can be expressed
abstractly by the variogram model and the associated covariance function,
which has to be fitted to the empirical data. The value prediction for a given
point is then performed by estimating the optimal weight for each observation
while considering this autocorrelation structure [Oliver and Webster, 2015,
Armstrong, 1998].

For simple kriging, the vector of weights λ is determined by:

λ = C−1 · c, (4.1)
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where C is the quadratic covariance matrix generated by applying the co-
variance function to each observation pair’s distance and c is generated by
applying the function to the distances between the interpolation point and the
observations, respectively.

The preceding step of fitting of an appropriate covariance function that is
needed to populate matrix C and vector c will be outlined in the following.

4.2 The Experimental Variogram

Given a set of observations—often irregularly distributed in space and time—
the primary aim of geostatistics is to inspect and describe its statistical prop-
erties in order to perform optimal interpolation.

To describe the autocorrelation of a given set of observations, the spatial,
temporal or spatio-temporal distances for all possible pairings of observations
are related to their semivariances by

γ =
1

2
(z1 − z2)2. (4.2)

Given n observations, the number of pairs p is given by p = (n2−n)/2. For
visual interpretation, for each pair of observations a point can be plotted in a
coordinate system that relates spatial (ds) and/or temporal (dt) distances to
the respective semivariance (see Figure 4.1).
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Figure 4.1: Spatio-temporal experimental variogram

The plot clearly reveals the fundamental characteristic of stationary phe-
nomena: observations proximate in space and time tend to be similar in value
while distant ones tend to scatter more.

The dimensionality of the variogram (both experimental and theoretical)
depends on the number of dimensions that are related to the calculation of
the semivariance γ. Taking into account only the spatial distance—be it in
one-dimensional (transects, time series) or two-dimensional space—leads to a
two-dimensional variogram. The anisotropy—the dependence of correlation
not only on the distance but also on the direction—can be considered by
multiple variograms for different circular sectors or, for more precision, a three-
dimensional surface [Oliver, 1995, p. 100]. Anisotropy is not considered in this
work in order to limit the overall complexity. It could easily be incorporated
in both the random field generator and the variogram fitting.

Considering time also adds a dimension to the variogram as depicted in Fig-
ure 4.1. The autocorrelation structure can be interpreted visually here with
respect to spatial and temporal distances. The differing characteristics of cor-
relation decay in space and time and also spatio-temporal interdependencies
[Cressie and Wikle, 2011], [Gräler et al., 2012] can thus be inspected. A no-
ticeable scatter near the coordinate origin indicates the nugget effect [Webster
and Oliver, 2007, Oliver, 1995], which is also not considered here for the sake
of complexity.
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To be applicable for calculation, the autocorrelation structure that is ma-
terialized in the experimental variogram needs to be expressed abstractly as
mathematical function. It is called the theoretical variogram and will be dis-
cussed in the next section.

4.3 The Theoretical Variogram and the Covari-

ance Function

The theoretical variogram can be seen as mediator between the experimental
variogram derived from the observational data and the covariance function
needed for the population of the covariance matrices. There is a symmetry
relationship between theoretical variogram and covariance function, as stated
in [Webster and Oliver, 2007, p. 55]:

Thus, a graph of the variogram is simply a mirror image of the
covariance function about a line or plane parallel to the abscissa.

This relationship is apparent when comparing Figures 4.2 and 4.3.
The fundamental geostatistical parameters sill (which expresses the disper-

sion of values for distant points) and range (which expresses the distance up
to which spatial autocorrelation takes effect) do exist for both representations.
Therefore, the fitting of the theoretical variogram to the experimental vari-
ogram pointcloud also provides these parameters for the covariance function.

In this context, it is appropriate to point out the fundamental relationship
between variance, covariance and correlation, as specified in [Abrahamsen,
1997, p. 9]:

c(τ) = σ2ρ(τ), (4.3)

where c is the covariance, σ2 is the variance and ρ is the (normalized)
correlation, given the separation vector τ as parameter.

The geostatistical parameter sill is sometimes falsely associated with the
dispersion variance. For a stationary process, the dispersion variance is slightly
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less than the sill variance [Webster and Oliver, 2007]. But since it is a pa-
rameter to be determined by iterative fitting (see Section 5.3.5), the dispersion
variance can very well serve as a priori estimation for the sill variance.

Being an abstract model of a (spatio-temporal) dispersion structure (Figure
4.2), it can visually be associated with the experimental variogram (Figure 4.1).
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Figure 4.2: Spatio-temporal theoretical variogram

As the mirror function, the covariance function relates the covariance (and
thereby also the correlation, see Equation 4.3) to the distance in space and
time. As can be seen in Figure 4.3, it has its maximum value at the origin and
decays with increasing distance.
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Figure 4.3: Spatio-temporal covariance function

It depends on the characteristics of the phenomenon which variogram model
(and therefore which associated covariance function) to choose: How many
dimensions (spatial, temporal or spatio-temporal) are there to be considered?
By which law does correlation decrease with increasing spatial and temporal
distance? Is there some noise for distances near zero (nugget effect)? Does the
correlation depend not only on distance but also on direction (anisotropy)?
How are the spatial and the temporal dimension entangled [Cressie and Wikle,
2011, Webster and Oliver, 2007]?

The basic two-dimensional representations of three commonly used covari-
ance functions are depicted in Figure 4.4. Their different behaviour especially
near the origin and beyond the range point implies different characteristics of
the corresponding process [Webster and Oliver, 2007, p. 80 ff.]. An initially
small (Gaussian) or moderate (spherical) slope that moderately increases (in
absolute value) before decreasing again (Gaussian) represents a rather smooth
model whereas a steep slope at the origin (exponential) indicates greater dy-
namic at a small scale. This can be comprehended from the graphs and their
associated random fields in Figure 4.4. In contrast to the other two covariance
functions, with the spherical the correlation ceases to zero for distances greater
than range.
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smoothness of each field is a function of the slope near the coordinate origin

The respective equations that generate the graphs in Figure 4.4 are given
below:

Gaussian:

c(h) = s · e
− h2

r√
3
2

(4.4)

Spherical:

c(h) = s · (1− (
3

2

h

r
− 1

2
(
h

r
)3)) for h < r, else c(h) = 0 (4.5)

Exponential:
c(h) = s · e−3h

r (4.6)

A graph intersecting the ordinate below the sill value (1.0 in Figure 4.4)
would represent a noise for near zero distances as nugget variance or nugget
effect. Its representation in the theoretical variogram—being the mirror image
of the covariance function—is more intuitive since the function starts with
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value of the nugget variance on the ordinate.
For spatio-temporal kriging, the principle of correlation decay explained

above needs to be extended for two input variables, namely spatial and tem-
poral distances. In the context of the simulation framework as described here,
this has to be considered for three basic procedures: (1) the variogram-based
filter that generates continuous random fields (Section 5.3.1), (2) the fitting of
the variogram (Section 5.3.5), and (3) the kriging interpolation (Section 5.3.6).

When more than one dimension is used as explanatory variable of the vari-
ogram model, the interaction between the dimensions according to correlation
has to be specified (see [Cressie and Wikle, 2011, p. 297 ff.] and [Gräler et al.,
2012] for thorough study and derivation of the formulae below). Within the
framework, four spatio-temporal variogram models commonly mentioned in
literature have been implemented (see Figure 4.5).
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Figure 4.5: Spatio-temporal variogram models: (i) separable, (ii) nonsepara-
ble, (iii) metric and (iv) product-sum, plotted as covariance functions with
parameters spatial distance (ds) and temporal distance (dt)
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In the case of separable covariance functions (see Figure 4.5 (i)), the product
of two separate covariance functions yields covariance values for compound
distances in space and time with

C(s, t) = σ2f(s)g(t), s ∈ R2, t ∈ R, (4.7)

where σ2 is the sill variance, f(s) is the covariance function for the spatial
component and g(t) is the one for the temporal component. They might differ
in mathematical model and associated parameters to reflect different dynamics
in space and time.

In nonseparable variants (Figure 4.5 (ii)), the spatial and temporal compo-
nents are entangled by

C(s, t) = σ2exp{−k2
s‖s‖

2/(k2
t t

2 + 1)}/(k2
t t

2 + 1)d/2, s ∈ R2, t ∈ R, (4.8)

where ks and kt represent scaling parameters for the spatial and temporal
component, respectively, and d stands for the number of spatial dimensions
[Cressie and Wikle, 2011, p. 317]. The term reflects spatio-temporal interac-
tion that can actually be found in many physical processes [Cressie and Wikle,
2011, p. 309 f.].

The metric covariance function (Figure 4.5 (iii)) simply applies a spatio-
temporal anisotropy factor (kt) to align the temporal with the spatial dimen-
sion:

C(s, t) = σ2f(

√
‖s‖2 + (kt|t|)2), s ∈ R2, t ∈ R (4.9)

In contrast to that, the product-sum model introduces some more interac-
tion between space and time (Figure 4.5 (iv)):

C(s, t) = k1f(s)g(t) + k2f(s) + k3f(t), s ∈ R2, t ∈ R (4.10)

The equations above express the autocorrelation structure of a random field
according to space and time. They are used in this work for generating random
fields, choosing and fitting variogram models and interpolating.

In the experimental setup proposed here, the random fields are generated
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by a filter kernel that applies a separable variogram model. A systematic and
thorough investigation of dependencies between the applied variogram filter,
the applied variogram model and its parameters and the resulting accuracy
(RMSE) might reveal interesting dependencies, but is out of the scope of this
work. There is, however, a relation between the range value used for the
variogram filter and the one determined by the variogram fitting procedure
and subsequent kriging that is applied to the random field generated by it:
The closer the estimated range value is to the one of the variogram filter, the
better the interpolation results become (see Section 6.2).

4.4 Variants and Parameters

Kriging has evolved to a complex technique with an almost overwhelming
amount of varieties and associated control parameters. Due to this complexity
it is often difficult to decide whether it is applied and configured correctly;
the mere selection as a method does not sufficiently imply appropriateness or
inappropriateness [Meyers, 1997, p. 42 ff.].

An overview of the most used versions is given by the list below without
any claim of completeness. It is mainly based on the rewiev in [Li and Heap,
2008]; see also [Burrough et al., 2015, Webster and Oliver, 2007, Cressie and
Wikle, 2011] for further study.

Block Kriging In contrast to point-oriented estimations, block kriging (BK)
claims for interpolations for (n-dimensional) regions of arbitrary form.

Cokriging Cokriging is the multivariate version of kriging that exploits
cross-correlations between different variables (e.g. atmospheric pressure and
precipitation) to improve predictions.

Disjunctive Kriging Disjunctive kriging transforms the primary variable to
polynomials that are kriged separately and summed afterwards. It is applied
when the primary variable does not sufficiently represent a normal distribution.
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Dual Kriging Instead of the values themselves, this variant estimates the
covariances. It is used when the filtering aspect of kriging is of interest.

Factorial Kriging By applying nested varigrams, the factorial kriging can
combine different correlation structures at different scales.

Fixed Rank Kriging This variant is applied for big datasets and reduces
the computational workload for inversion of the covariance matrix.

Indicator Kriging When the output variable is supposed to be binary, rep-
resenting some threshold (e.g. humid vs. arid), indicator kriging can be ap-
plied.

Ordinary Kriging Ordinary kriging incorporates the estimation of the mean
value by adding lagrange multipliers to the covariance matrix.

Principal Component Kriging Principal component analysis (PCA) is
used to identify and quantify correlations in the data, process the identified
(uncorrelated) components separately before generating the estimation by lin-
ear combination of those components.

Regression Kriging In regression kriging, any trend is determined and re-
moved from the data before the interpolation and added again afterwards.

Simple Kriging Simple variant of kriging that presumes a constant and
known mean value. Given the synthetic random fields generated according to
this and other statistical parameters, this is the variant that was predominantly
used in this work.

Universal Kriging To integrate a trend in the process, universal kriging
incorporates a smooth surface as a function of position.

The variants listed above are by no means exhaustive but can only give a hint
of the versatility of kriging, which emerges from combinations and subclasses.
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Unlike some more intuitive geographic analysis tools (e.g. intersection, buffer-
ing, spatial join etc.), kriging as a method requires deeper understanding of
the underlying principles to be applied appropriately [Meyers, 1997]. This is
also the case for its control parameters, of which the most important ones are
listed below.

Sill As already mentioned, the sill variance or sill expresses the overall vari-
ability of a random field. It represents the maximum threshold value for semi-
variances of pairs of observations (Equation 4.2) and is reached for distances
exceeding the range parameter (see below). The sill variance is not to be con-
fused with the dispersion variance which is just the variance of observations
in the classical sense. The actual sill variance should rather be estimated by
fitting the theoretical variogram to the data. However, since this procedure is
usually performed by optimization techniques (see Section 5.3.5) the dispersion
variance can be a good first approximation.

Range The range is the second decisive parameter for kriging since it ex-
presses the distance up to which the observations are stronger correlated than
the average of all possible pairs of observations [Webster and Oliver, 2007, p.
89]. In the case of spatio-temporal variogram models, there might be separate
range parameters for the spatial and temporal dimension. For the separable
variogram there is a range parameter for the spatial and one for the temporal
covariance function (Equation 4.7). In the case of the metric variogram model,
the spatial and temporal distances are cumulated by using an anisotropy fac-
tor (Equation 4.9). For the nonseparable variogram (Equation 4.8) and the
product-sum variogram (Equation 4.10) there are factors to control scaling and
interaction of space and time [Cressie and Wikle, 2011].

Nugget Effect Just as for the range, also the nugget effect might show
different dynamics in space and time, resulting in a joint short-distance noise.
The nugget effect, however, is often difficult to estimate in practice since the
measuring stations are chosen at distance to avoid redundancy for economic
reasons [Gräler et al., 2012]. As mentioned before, the nugget effect is not
considered further in this work.
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The parameters above are usually estimated individually for each dataset by
fitting the theoretical variogram to the respective experimental variogram. The
more parameters take part as variables in this fitting procedure, the more
cumbersome the optimization can become. This aspect will be addressed in
Section 5.3.5 and Section 5.5.

Given the variety of methods and parameters mentioned above, it is worth
considering an architecture that provides the interpolation of a value of inter-
est as a service. Without having to deal with too many details and program
specifics, a common method with approved configuration could simply be iden-
tified by a unique name. Alternatively, for more flexibility the service could
be configured by an appropriate interface (see Chapter 7).

4.5 Kriging Variance

Apart from the advantages of the method of kriging that have been covered
so far, the provision of the estimation variance is unique among interpolation
techniques [Oliver and Webster, 2015, p. 1, p. 60]. It is a by-product of each
point interpolation and reflects the uncertainty of estimation resulting from
the constellation according to spatial and temporal distances to observations.
Just as the estimated variable itself, it represents a continuous field that can
be discretised as raster grid.

The kriging variance is derived by multiplication of the weight vector from
Equation 4.1 with the vector c that contains the covariance values of each
observation with respect to the interpolation point:

v = λᵀc (4.11)

As the ingredients of the derived value show, it only depends on the covari-
ance structure that is given by the geometric constellation of the observations
and the interpolation point; it does not depend on the observed values them-
selves [Guestrin et al., 2005].

When creating raster grids by interpolation with kriging, it is useful for
many purposes to also store the kriging variance (or deviation) for each cell
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as additional dimension or channel. This “map of the second kind” [Meyers,
1997] reflects the confidence of estimations as a continuum with respect to the
proximity to observations.

In the scope of this work, the kriging variance represents a highly valuable
information. In the context of monitoring it—or its complementary value—
can also be interpreted as information density and thus be exploited to address
several problems of monitoring:

Continuous integration of new observations In monitoring scenarios
where a state model has to be provided in (near) real time, there is the problem
of how to seamlessly integrate new incoming observations. For workload and
consistency reasons, this updating should be carried out without having to (1)
calculate the model anew using all previous and the new observations or (2)
replace the old model by one relying only the most recent but probably too
few observations. A compromise would be a sliding window [Whittier et al.,
2013] containing only observations that do not expire a particular actuality.
But depending on the spatio-temporal distribution of the observations and the
size of the time window, the approach might cause temporal discontinuities if
the window is to small and heavy computational workload if it is too large.

Alternatively, the model can be updated smoothly and selectively wherever
new observations occur. To accomplish this, the kriging variance—continuously
available for the predecessor and the new model—can be used as weighting
schema by which both models are merged (see Section 5.4.2). This method is
highly flexible in terms of the number of new observations to be integrated be-
cause it retains the previous model where no new information is given instead
of indifferently overwriting it.

Performance improvement by model subdivision Apart from its ap-
plication for continuous updating in a data stream environment as described
above, the method can also be used to mitigate the computational burden
of numerous observations. Instead of including all observations in one large
model, it can be divided into subsets that are processed individually and then
merged by weights based on their kriging variances (see Section 5.4.2, also
[Lorkowski and Brinkhoff, 2015b]).
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Confidence about critical state checks In a monitoring scenario with
critical state checking (see Figure 5.13, p. 100), the kriging variance can sig-
nificantly help to put such a statement on a objective basis. So if a sensor
network is installed to push an alert in case of some exceeded threshold, the
intrinsic idea behind it is to permanently exclude the possibility of that threat.
Whether this is the case because of an actually exceeded threshold or because
some sensors are down and therefore no sufficiently secure knowledge is avail-
able: some actor needs to be notified to induce some predefined procedure.
The failure of sensors might eventually not change the derived value itself, but
rather its variance and therefore the confidence of the associated state check.

Adaptive filtering Data sparsity is a very common problem for monitoring
scenarios. However, with an increasing number of available low-cost sensors
just the opposite can become a problem that calls for decimation of observa-
tions. It should be carried out deliberately since autonomous mobile sensors
might not be distributed homogeneously (like drifting buoys, see [Wei et al.,
2015]). Observations that would only minimally contribute to updating the
model should preferably be left out. The kriging variance map as indicator for
information determination or information density can be used for such adap-
tive filtering: only observations in regions above a particular variance threshold
are considered in order to limit data redundancy. Another way would be to
order a set of new observations by the values determined by their position on
the kriging variance map to leave out a particular number or quantile of the
data. The utilisation of the kriging variance as filter provides a flexible and
adaptive solution wherever too much observational data is a problem.

The various areas of beneficial application of the kriging variance or kriging er-
ror maps [Meyers, 1997] as listed above constitute a strong argument in favour
of kriging as interpolation method. The estimated confidence for each inter-
polated value is such a crucial information that it should always be considered
carefully.
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4.6 Summary

Notwithstanding the computational burden kriging lays on the monitoring
system, it offers several features that make it unique compared to other inter-
polation methods:

• It is an unbiased estimator of minimum variance [Oliver and Webster,
2015]

• It is well established in geosciences, but also in the area of machine
learning, where it is known as gaussian process regression [Rasmussen,
2006, Gelman et al., 2014]

• By the concept of the variogram and the associated covariance function,
kriging allows to consider even complex correlation structures with re-
spect to time, space, space-time, periodicity, nugget variance, anisotropy
etc. [Webster and Oliver, 2007, Cressie and Wikle, 2011]. Given this
powerful feature, the method is capable of adapting to a large variety of
phenomena

• There is a vast number of kriging variants to address the wide range of
problems associated with the monitoring of continuous phenomena [Li
and Heap, 2008, Burrough et al., 2015], [Meyers, 1997, p. 43]

• The parameters of the variogram are usually estimated from empirical
data; they specify the statistical properties of a particular phenomenon;
their values might provide valuable information for retrieval when pro-
vided as metadata

• The kriging variance with the associated kriging error map or the “map
of the second kind” [Meyers, 1997, p. 464] is crucial where confidence
of the interpolated values is important. It can also be exploited for
features like performance improvement, continuous seamless updating
and filtering (see Figure 5.13, p. 100)

The undisputable high computational burden (O(n3) for the inversion of the
covariance matrix) of kriging may disqualify the method where high through-
put goes along with real-time requirements. In such cases, inverse distance
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weighting (IDW) might be preferable due to its lower complexity [Whittier
et al., 2013].

On the other hand, its often superior interpolation quality [Appice et al.,
2014, p. 51], the explicitly estimated and intuitively interpretable statisti-
cal parameters, and the very valuable additional information of the kriging
variance make it a choice that should always carefully be considered. For op-
erating an environmental monitoring system it provides sophisticated means to
address many problems that occur in this context. With its diverse variations
and parameters it is well suited for iterative improvement within a simulation
environment.
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5.1 Overview

On a very abstract level, the problem addressed within this work can be ex-
pressed as illustrated in Figure 5.1: a continuous phenomenon with its specific
dynamism in space and time is observed by a set of measurements of particular
density and distribution. From these discrete observations of the phenomenon,
a continuous model can be derived by applying an interpolation method. This
model needs to be discretised for interpretation or analysis. A regular grid of
appropriate (spatio-temporal) resolution is much easier to interpret and anal-
yse than the original dispersed observations.

Interpolation

Derived Grid

Sampling

Continuous Field

≠ Model Error

Figure 5.1: Monitoring principle for continuous phenomena

In the context of a simulation framework with a synthetic continuous field
as phenomenon model—usually realized as a grid—there is the advantage to
be able to compare this reference with the model derived from the monitoring.
The two main processes of monitoring, namely sampling and interpolation, can
thus be evaluated by a meaningful quality indicators like the root mean square
error (RMSE) as difference between the synthetic model and the interpolated
model. By varying methods and parameters of the processes and observing
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the effects on this quality indicator, the monitoring can iteratively be improved
[Barnsley, 2007, p. 18 f.], [Goosse, 2015, p. 114 f.].

Beside the quality, also the efficiency of the monitoring can be judged by
introducing indicators for the effort for computation and eventually also for
data transmission. By improving methods and algorithms, the expenses in
time and energy can eventually be reduced while achieving similar quality of
monitoring.

As illustrated in Figure 5.1, the main goal of the framework is to allow
for continuous improvement of the entire process of monitoring according to
accuracy and efficiency.

The framework presented in this work addresses this goal by (1) creation
of continuous random fields and simulation of monitoring, (2) systematic vari-
ation of the interpolation method and their parameters (3) evaluation of the
process variants using different performance indicators.

These concepts and tools will be presented in the rest of this chapter. Their
experimental application and evaluation is carried out in Chapter 6.

5.2 Workflow Abstraction Concept

The area of concern of this work is the acquisition and interpolation of envi-
ronmental, spatio-temporally referenced observational data (monitoring), the
processing of such data (analysis) and the modelling and execution of different
variants of these two activities (simulation).

These tasks necessarily include the management and processing of spatio-
temporally referenced data, which is often computationally intensive. It is
therefore crucial to find working solutions under limited resources, especially
for battery operated systems like wireless sensor networks. Beside the effi-
ciency aspect concerning computation time, energy and data volume, most
of all the quality achieved by the applied interpolation method is a crucial
evaluation metric. It can be used to evaluate several methods and adjust the
corresponding parameters to generate best solutions.

In simulated scenarios where the synthetic model provides full knowledge
about all relevant environmental parameters, it is easy to determine the quality
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of the monitoring of a continuous phenomenon by comparing the reference
model with the one derived from interpolated observations. In this case, the
root-mean-square error (RMSE) is the target indicator to be optimised.

In distributed environments, the transmission of data is often a critical
aspect because it is relatively energy intensive. So compression and decom-
pression of data in this context is an important issue (see Section 5.4.3).
This is also the case for long-term archiving in databases, where also an ap-
propriate indexing strategy is indispensable especially for spatial, temporal
and spatio-temporal data for efficient retrieval [Brinkhoff, 2013, Rigaux et al.,
2001, Samet, 2006].

On an abstract level, the considerations above can be condensed to a data
process model as sketched in Figure 5.2. The model entails the process itself,
the input and output datasets, and properties associated with all of those
elements.

Process/

Transmission

•Extent •Density •Data Format  •Data Volume

•Statistical Properties  •Accuracy •Compressibility •Indexing

•Method •Parameters  •Implementation  •Computing Effort

•Energy Effort •Compression/Decompression Effort •Transmission Effort

Input/

Source

Output/

Sink

Figure 5.2: Abstraction of a process/transmission step with associated prop-
erties

The term component is used by [Taylor et al., 2009] for a processing unit
and defined as follows:

A software component is an architectural entity that (1) encapsu-
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lates a subset of the system’s functionality and/or data, (2) restricts
access to that subset via an explicitly defined interface, and (3) has
explicitly defined dependencies on its required execution context.

In the context of the system introduced here, a component’s dependencies to
the entire system are given by the input data, the output data, the parameters
that control its behaviour and the resources necessary to execute it. A complex
simulation will be composed of multiple such process steps or components
sequenced by their logical order (see Figure 5.3).

Basically, Figure 5.2 entails the generic properties of input and output
datasets (source and sink for transmission processes) that affect such a process
step. The process itself is determined by its concrete realization (method, im-
plementation, parameters) and the input dataset. To evaluate the quality and
efficiency of the process or the transmission, respectively, the indicators for
expense in computation, energy, compression/decompression and transmission
are identified.

As will be shown in Section 5.5.2, the computational cost for a particular
workload can be expressed in terms of time and energy by assigning a specific
hardware configuration.

From the data perspective, we find the properties extent in space, time and
value, the amount and distribution (point data), the resolution (raster data),
and their format and its compressibility. Statistical properties can help to
decide whether the data can be used for the intended purpose. In simulated
scenarios as in this case, it is also possible to exactly quantify the accuracy of
the entire monitoring process by indicators like the RMSE. In order to enhance
the performance of data retrieval, an indexing can be attached to the data.

With regard to complex computing systems for monitoring, analysis or sim-
ulation that need to work with limited resources (computation capacity, time,
energy), such abstraction is necessary to evaluate scenarios with respect to
different hardware configurations, algorithmic methodologies, corresponding
parameters and balancing of workloads in distributed environments.

Having (near) real-time and/or mobile monitoring applications in mind, the
factors computation workload, data volume and compressibility (see Section
5.4.3) gain more importance. Given the aspects associated with each process
step as depicted in Figure 5.2, a careful balancing of these partly interdepen-
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dent factors is essential to address both the requirements and the restrictions
of a monitoring environment.

The properties of the abstraction model as sketched above will be discussed
more thoroughly in the following two subsections.

5.2.1 Datasets (Input/Source and Output/Sink)

There are several generic properties of datasets that appear relevant in the
context of a monitoring environment, as shown in Figure 5.2.

The extent of a dataset defines its spatial and temporal expansion in a global
reference system. It is the crucial criterion to organize extensive environmental
data. Without specific indexing techniques, it would not be possible to provide
efficient retrieval of the data [Rigaux et al., 2001, Appice et al., 2014].

The frequency and distribution of observations define the data density for
vector data, the resolution expresses this property for raster data, respectively.

The syntactic structure of each dataset is determined by its data format.
The underlying model reflects the level of abstraction [Gigch, 1991, p. 69] of
the described phenomenon.

The data volume that is necessary for each dataset depends on the data
format and the number of features (vector) or on the extent, resolution and
color depth (raster), respectively.

Compressibility is the ratio by which the data volume can be reduced by
applying a compression algorithm. It can produce lossless or lossy represen-
tations for both raster [Gonzalez and Woods, 2002] and vector [Huang et al.,
2008] data formats.

Statistical properties are of high value when reviewing and analyzing datasets
[Gama and Gaber, 2007]. Classical aggregates like mean and variance provide
basic characteristics of the data. More sophisticated indicators like a geo-
statistical variogram convey deeper knowledge about the general structure of
the data. This knowledge can be exploited by applications or users to decide
whether a particular dataset has to be considered at all.

The accuracy of a dataset that represents a field and was generated from
observations can be derived by different methods. A root-mean-squared error
(RMSE) can usually only be calculated when some reference is given, as is the



71

case for simulations. Cross-validation is often the method of choice for em-
pirical data where the only available knowledge consists of observations them-
selves, although it does not necessarily have to be a good accuracy indicator
in every case [Oliver and Webster, 2015, p. 68].

Spatio-temporal indexing of a dataset is the prerequisite for efficient data
retrieval [Brinkhoff, 2013]. For observational data (vector), the conventional
method of defining indexes per feature table might be used. However, the
management of these data on the granularity level of single observations might
add too much overhead, especially when considering long term archiving.

Instead, it appears reasonable to conflate spatio-temporal areas of obser-
vations and exploit their proximity of coordinates and observed values for
compression (see Section 5.4.3). The spatio-temporal indexing would refer to
those conflated sets which then have to be decompressed on demand. When
configured appropriately, this overhead should be outweighed by the benefit of
less storage space.

5.2.2 Process/Transmission

On an abstract level, a process step generates an output dataset from an input
dataset by applying an algorithm with associated methods and parameters
(see Figure 5.2).

Limited resources like computation power, time and energy put considerable
demand on the processes to be as efficient as possible. There are generally two
different modes of improvement: (1) optimising procedures that are sharply
defined according to their result (e.g. sorting of a list) and (2) optimising
procedures that are only vaguely defined (e.g. interpolation of observations,
fitting of a variogram). In the second mode, there is always a trade-off between
cost and effect of a particular procedure that might be difficult to weight. It
is this mode that the present work focuses on.

A thorough analysis of requirements, realistic workloads, appropriate hard-
ware and feasible variants of transmission and processing is necessary to evolve
the monitoring towards more and more efficient solutions. Especially environ-
ments with wireless communication, big datasets and/or real-time require-
ments put considerable constraints on the way a process is executed.
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A continuous overall optimization requires both the evaluation of the quality
of the resulting interpolated model, often indicated by the RMSE, and the
tracking of workloads according to transmission and computation (see Section
5.5.2). These have to be registered for each process step and summarized in
order to weigh the quality of a monitoring against its costs (see Figure 3.2, p.
43).

For an extensive experimental study which compares various configurations,
it is helpful to carry out these variations in a systematic and automated way.
Especially when there are manifold methodological and parametric settings
that need to be tested and evaluated (see Table 6.3, p. 168), such an approach
can become indispensable for reasonable investigation.

In the context of a complex monitoring scenario as introduced here, there
are generally two modes of variation, which can be related to different scales
of measure [Cova and Goodchild, 2002], [McKillup and Dyar, 2010, p. 16]:

1. Switching between algorithms and different implementations (nominal
scale)

2. Adjusting a parameter (ordinal, interval, and rational scale)

For the first mode, switching between different variogram models (expo-
nential, spherical, Gaussian) is an example of its application to a simulation
scenario (see Section 6.2). The second mode can be used to vary the number of
observations by defining a minimum, a maximum and an increment value (see
Section 6.1). This mechanism can also be applied to floating point parameters
that are not included in the Gauss-Newton optimization (see Section 5.3.5).

The circular design or “closed loop” [Sun and Sun, 2015]—as described in
Section 1.2 and depicted in Figure 1.1—facilitates continuous optimization of
monitoring by processing multiple simulation scenarios with different condi-
tions according to sampling design, algorithms and parameters.

Such an optimization can be carried out with respect to several target indi-
cators, of which the following are of central interest with respect to algorithmic
improvements:

• quality (e.g. quantified by RMSE)
• logical computational workload (instructions)
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• physical computational workload (time and energy)

Whereas the quality indicator RMSE is rather straightforward in the sce-
nario that is regarded here, the computational workload can be either regarded
from a logical or a physical perspective. This differentiation is necessary when
the execution effort is to be estimated for different hardware environments.
The general concept is introduced in Section 5.5 and is applied experimentally
in Section 6.5.

5.3 Monitoring Process Chain

In the last section, the properties of process steps, input and output datasets
and performance indicators have been set out. In combination with a solu-
tion for parameter variation, a generic toolset for systematic improvement of
monitoring is provided.

In this section, each step within a monitoring scenario is specified according
to its methodology, parameters, input and output data. An overview of this
process chain is given by Figure 5.3.
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Figure 5.3: Simulation framework architecture with datasets/models (rounded
boxes), processes (circles) and their parameters (blue boxes), and their impact
on the model error (dashed arrows)

The main objective in the simulation scenario illustrated by Figure 5.3 is to
identify those methods and parameter settings that yield the smallest RMSE
(7) and therefore the best approximation of the continuous random field gen-
erated by the filter (1). For the sampling of this random field (2), for the
generation of the experimental variogram (3), for the aggregation of the latter
(4), for the variogram fitting (5), and finally for the interpolation by Kriging
(6), there are multiple variants of algorithms and associated parameters to be
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evaluated.
The proposed simulation framework was implemented using programming

language C# [Nagel et al., 2005]. With the GNU project gstat [Gräler et al.,
2016], there already exists a powerful package for geostatistical processing. It
is implemented in the statistics-centric programming language R.

For the simulation framework that is referred to in this work, the full-
featured programming language C# was preferred due to its expressiveness
through the support of multiple paradigms, its mature state and wide sup-
port, and its portability to almost all platforms. Although this decision means
“reinventing the wheel” in many respects, it provides maximum independence
and flexibility according to modelling, optimization, portability and interop-
erability.

In the following subsections, each step of the process chain of Figure 5.3 is
specified in detail.

5.3.1 Random Field Generation by Variogram Filter

In order to evaluate different variants of monitoring continuous phenomena, a
continuous field is generated as reference model on which sampling and inter-
polation is carried out. Because continuity is only a theoretical concept, the
field has to be discretised in some form. A regular grid raster as most common
representation of such data structures is also used here.

Beside the two-dimensional grid raster that can easily be visualized as
greyscale image, also three-dimensional fields are used to represent models
that include the temporal dimension. Such a model can then be visualized as
a sequence of images or a movie [Whittier et al., 2013].

These fields are considered, at least approximately, stationary, which means
that their statistical properties mean, variance and autocorrelation are invari-
ant under translation in space and time [Cressie and Wikle, 2011]. In the strict
sense, however, stationarity is a concept that can only occur in fields of infinite
extension (see Section 2.3, also [Webster and Oliver, 2007]). But since nat-
ural phenomena cannot fulfil this criterion either, the data generated by the
filter is considered to be sufficiently stationary for the purpose of simulated
monitoring.
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Pure White Noise Grid As a prerequisite for a multidimensional contin-
uous random grid that has to be generated, a grid of pure white noise of the
required dimensionality and resolution is created. Its grid cells are independent
and identically distributed (IID) random values. For the fields generated here,
it is characterized by normal distribution, the preset mean value µ and the
standard deviation σ. In order to create normally distributed variables from
uniformly distributed pseudo-random numbers, the well-known Box-Muller al-
gorithm [Robert and Casella, 1999, Press et al., 2007] is used.

Figure 5.4: Pure white noise grid

An example of such a random grid is given by Figure 5.4 where it has been
applied for two dimensions and transformed to greyscale levels.

When neglecting the concept of stationarity, deliberate variability in mean,
variance, skewness, kurtosis or even higher moments can be incorporated in the
random grid. This can be achieved by making the parameters of the probability
distribution a function of position in space, time or space-time. The approach
could be implemented by using a continuous function of position or a pre-
calculated continuous surface to control one or more of the parameters.

The resulting continuous but inhomogeneous field could then be used to
test the capability of the applied interpolation method to cope with such geo-
statistical anomalies. The present work, however, is limited to the simple case
of the parameters mean and variance which remain constant and thus produce
a homogeneous model.

Covariance Function Filter The general concept of the theoretical vari-
ogram and the associated covariance function has been described in Section
4.3. As already mentioned, the covariance function is used to estimate the
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parameters of the observed field (see Section 5.3.5), to perform the optimal
interpolation (see Section 5.3.6) and for the generation of continuous random
grids, which will be described here.

The principle of ceasing correlation, as is immanent to any covariance func-
tion, is applied for the moving average filter in order to generate a continu-
ous random field from the pure white noise field. Its application to a two-
dimensional field is depicted in Figure 5.5(b). The moving average filter—
also called mask, kernel or template for two-dimensional grids [Gonzalez and
Woods, 2002]—defines a value for each cell by which the underlying cell (of
the grid it is applied to) is to be weighted. The weight is determined by the
associated covariance function and the (euclidean) distance of that cell to the
centre of the filter.

For practicability, the filter grid has the same dimensionality and resolution
as the white noise field grid it is applied to. In the case of a spatio-temporal
grid, each particular cell can be specified by its spatial (euclidean norm) and
its temporal distance to the centre. The respective result value given by the
associated spatio-temporal covariance function is the weight for that filter cell.
Due to the identical dimensionality and resolution, the filter can be applied to
a target grid by simple matrix-based translations.

Figure 5.5 shows a continuous random field generated by applying the filter
to a white noise field.

(a) Pure white noise
array

(b) Moving average fil-
ter based on covariance
function

(c) Continuous filtered
array

Figure 5.5: Random field generation by moving average filter

Depending on the applied covariance function, the filter grid has different
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extensions. If, for example, a spherical covariance function (see Figure 4.4, p.
54) is used for filter definition, the correlation between observations further
apart than range is always zero. Therefore, the grid size of the filter does not
need to extend the corresponding distance for that dimension. Whereas for an
exponential covariance function where the correlation becomes tiny but never
zero, even for large distances, the filter consequently needs to cover all cells
of the grid of white noise it is applied to. This means a filter resolution of
2r − 1, where r is the resolution—for that dimension—of the random field to
be generated.

To avoid critical workloads for random grid generation caused by this con-
stellation, an optional restriction is included. The reach (not the range!) of
the covariance function can be restricted to a distance where e.g. less than
1% of full correlation is left. Since the random grid cells affected by these
peripheral filter cells are relatively high in amount and relatively low in de-
rived weight, they tend to sum up to zero (relative to the mean value) and can
therefore be neglected.

Depending on the size of the filter grid and the current filter position, there
is a considerable amount of filter cells that lie outside the target grid. Conse-
quently, they do not contribute to the average value assigned to the target cell
on which the filter centre is currently positioned. The proportion of outside
filter cells increases towards the fringes and even more towards the corners of
the target grid, also depending on the dimensionality.

In some cases, this situation can be avoided by extending the white noise
field by n−1

2
when n is the resolution of the filter grid in the respective dimen-

sion [Oliver, 1995]. This approach was not considered here since no “fringe-
effect” of a strikingly different pattern could be identified in the generated
fields. Furthermore, it would put considerable burden on the random field
generation process, especially for filter grids of large relative extension.

Result: Continuous Random Grid As product of the statistical opera-
tion of a moving average covariance-weighted filter on a pure white noise grid,
the continuous random grid has properties that are determined by this process.
Since the process of filtering basically generates weighted mean values of the
surrounding random cells, the derived filtered grids—at least in tendency—
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share their mean value with the white noise field used to generate them. From
the configuration of the variogram based filter (Figure 5.5(b)), also the vari-
ance of each cell value of the filtered grid can be derived as variance of the
weighted sample mean with

σ2
x = σ2

0

n∑
i=1

w2
i , (5.1)

where σ2
0 is the variance of white noise field that is equal for each cell and

the wi are the weight values derived from the covariance function for each
position in the filter grid.

The value of σ2
x—as being derived from the white noise field and the filter

grid configuration—determines the variance of each single cell of the random
grid. This value is assumed as approximate dispersion variance and is therefore
used as initial value for the variogram fitting procedure (see Section 5.3.5),
although it is not to be confused with the sill variance in the strict sense
[Webster and Oliver, 2007, p. 102].

5.3.2 Sampling

The sampling design has to be sufficient with respect to density and distribu-
tion to capture the underlying phenomenon in a way that adequately addresses
the problem or question at hand [Chun and Griffith, 2013]. Some general issues
about the effectiveness and efficiency of sampling have already been mentioned
in Section 3.3.2. These considerations will be concretised in the following.

Within a monitoring scenario, sampling is the most fundamental and often
also the most expensive task; all subsequent process steps must rely on this
limited data about the real phenomenon that is provided by sampling. There
are the following aspects that have to be considered carefully in this context:
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• the phenomenon itself and its properties (dynamism in space and time,
periodicities, isotropy and trends)

• the sampling design (density and distribution, effectiveness and effi-
ciency of observations)

• the sensor accuracy
• the appropriateness of the selected interpolation method
• the problem to solve or the question to answer

When regarding a monitoring scenario as a whole, it turns out that these
aspects are not independent but relate to each other, as following examples
show:

• An increased dynamism of the phenomenon makes a higher sampling
rate necessary

• To choose an appropriate and elaborate interpolation method can help
to reduce the number of necessary observations

• The more complex a process is, the more observations are usually nec-
essary to generate a model that adequately represents its dynamism

• A dense network of observations is necessary to gain sophisticated
knowledge about a phenomenon and thus helps to refine the associated
models

• The better the physical processes are understood, the less observations
will eventually be needed to generate an appropriate model

• Changed requirements according to the aims of the monitoring—e.g.
detailed reconstruction instead of rough aggregation—will probably
affect the overall effort that is necessary for the monitoring

In many cases, the dynamism of the continuous field is only roughly known
in advance and is therefore not revealed until processing the data. In the case
of geostatistics, the experimental (see Section 4.2) and the theoretical (Section
4.3) variogram derived from the data will contain hints whether the chosen
model is appropriate. It is then up to the operator to decide if the sampling
and/or the interpolation model need to be improved. The monitoring frame-
work might provide suitable indicators—e.g. residuals from the variogram
fitting—to support such decision processes.

Beside the “reconstruction” of a continuous phenomenon in space and time—
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e.g. as a representation of its current state—monitoring can also include the
task to check the model for predefined critical states and fire an alert when
such a state is present (see Figure 5.13, p. 100, also [Lorkowski and Brinkhoff,
2015a]).

Such a critical state could be defined by an exceeded threshold in the simple
case. For more elaborate applications, it might be formulated as follows: “We
need to make sure by 95% confidence that the nitrogen oxide pollution of dis-
trict A is below 40µg/m3 in average per day.” Therefore, it is not sufficient to
rely on the interpolated values alone; their confidence estimation also needs to
be considered here. Only the combination of value and confidence estimation
will provide enough information to either confirm or reject the presence of a
critical state, which, by this particular definition, could also be caused by insuf-
ficient sampling. Since the method of kriging explicitly comprises confidence
estimation, for that reason alone it is an appropriate solution for problems
similar to the one described above.

Sampling Density

As already mentioned above, the sampling density that is necessary for an
appropriate monitoring of continuous fields depends on its dynamism in each
dimension. In practice, this dynamism is either known from previous or similar
monitoring scenarios or has to be derived directly from the data (see sections
4.2, 4.3, 6.2).

The issue is identified as “data sufficiency problem” in [Sun and Sun, 2015,
p. 22], which should be addressed by an “optimal experimental design (OED)”.
It strives for a good compromise between information content and cost. This
problem is referred to as “representativeness” by [Meyers, 1997, p. 187]. Con-
sequently, in the realm of monitoring continuous phenomena, some estimation
of when a sampling density is sufficient is necessary.

Within the proposed simulation framework, the dynamism can be deter-
mined by setting the spatial, temporal or spatio-temporal parameter(s) range
of the variogram filter used to generate the reference field (see Section 5.3.1).
These parameters can then be compared with the ones derived from the var-
iogram fitting procedure applied to the simulated observations (see Section
6.2).
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The main objective that is addressed here is to quantify the relation between
this dynamism and the average sampling density that is necessary to capture
the phenomenon adequately. Instead of applying heuristics like “nested survey”
[Webster and Oliver, 2007, p. 127] in order to systematically inspect the
autocorrelation structure of a particular phenomenon, we will try to find some
law, or at least some rule of thumb, to derive the necessary average sample rate
from the extension and the dynamism of the phenomenon. If this rule is valid
for synthetic fields, it is assumed to be applicable to real-world phenomena for
which the dynamism is estimated by the parameter range for each dimension.

To approach this problem, it is first reduced to the one-dimensional case
before looking for analogies to the Nyquist-Shannon sampling theorem which
is well known in signal processing [Pollock et al., 1999].
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Nyquist-Shannon sampling theorem

Figure 5.6: Nyquist-Shannon sampling theorem

As can be seen in Figure 5.6, according to the theorem, at least two samples
per wavelength are necessary to capture a periodic sine signal. The sampling
distance d is thus determined by

d =
λ

2
. (5.2)

Since periodicity is usually not found in natural continuous fields, the sam-
ple rate necessarily needs to be higher to capture such phenomenoa appro-
priately. For approximation, uniformly randomly distributed samples instead
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of systematic or stratified sampling [Chun and Griffith, 2013] are presumed,
because such regular configurations are hardly encountered for mobile wireless
sensors [Umer et al., 2009]. Furthermore, systematic or stratified distribu-
tions will reduce the variety of small distances which are crucial for variogram
estimation [Oliver and Webster, 2015, p. 53], [Armstrong, 1998, p. 53].

Two general challenges need to be addressed to transfer the principle of
Nyquist-Shannon to the domain of multidimensional continuous phenomena:

1. Finding a reasonable factor to relate the wavelength of a periodic
signal to the parameter range of general continuous phenomena

2. Extending the principle from one-dimensional to multidimensional ap-
plications

In order to obtain an estimate of the geostatistical concept of range within
a sine signal, the experimental variogram for 100 uniformly distributed ob-
servations within one wavelength of a sine function is generated. From this,
the semi-variance can be derived by Equation 4.2 for each pair of observations.
The experimental variogram is generated by plotting these values against their
corresponding pair distance (see Section 4.2). As can be seen in Figure 5.7,
the experimental variogram for the 4950 possible pairings from 100 uniformly
dispersed observations converges against zero as the distance approaches the
value of 1 (unit: wavelength of 2π) and is confined by sine shaped upper and
lower bounds. These regular patterns are caused by the periodicity and are
usually not found in experimental variograms. But this can be neglected here
since we are only interested in the first position from which on the dispersion
of values exceeds the total variance.

As common in geostatistics, the trend of the variogram can be approximated
by interval-wise aggregations of the experimental variogram points [Webster
and Oliver, 2007, Gräler et al., 2016]. The polygon connecting those aggre-
gation points represents this trend. It is this geometry to which a theoretical
variogram is usually fitted by adjusting its parameters (and therefore the pa-
rameters of the covariance function, see Section 5.3.5).

In the case of the sine signal, however, there is no appropriate theoretical
variogram to fit to since the semi-variances γ decrease when approaching the
value of 1.0, which is not the case for a valid variogram. But since the only
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Figure 5.7: Experimental variogram with semivariances (γ) plotted against
pair distances (normalized to the wavelength of 2π) of observations on the sine
signal; the sill, represented by the green horizontal line, is intersected by the
polygon of aggregated interval points; the abscissa position of this intersection
is considered as range

value of interest is range here, there is a quite straightforward way to roughly
estimate it.

As can be seen in Figure 5.7, an approximation of the value range can
be derived from the first point of intersection between the total variance (or
dispersion variance [Webster and Oliver, 2007]) of the dataset (horizontal line)
with the polygon line.

This point is assumed to represent the threshold distance between point
pairs from which on the dispersion (or semi-variance) between the point values
is just as large as the total variance of the dataset. As already mentioned in
Section 4.3, this does not strictly comply with geostatistical practice, but is
considered to be sufficient to derive an approximative value for the minimum
sampling density.

The experiment as depicted in Figure 5.7 was repeated 30 times and in av-
erage reveals a dispersion (or total) variance of 0.4878 with standard deviation
of 0.0503. The average ratio between wavelength λ and range r is 0.2940 with
standard deviation of 0.0188. For convenience, this value is rounded to the
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safe side (down), so the range-wavelength ratio is estimated by

r

λ
≈ 1

4
. (5.3)

To adequately capture a sine-shaped signal for interpolation by the method
of kriging, we assume an minimum average coverage by two observations per
range distance (or eight observations per sine wavelength, respectively) be-
cause this is the minimum number of observations to at least detect a correla-
tion above the average correlation within one range distance. From that, the
sampling distance dp can be derived by

dp =
λ

8
(5.4)

to capture periodic signals of wavelength λ for kriging interpolation and

dc =
r

2
(5.5)

for continuous non-periodic signals with range r.
To derive the number of samples for regions of arbitrary extension, we need

to apply a factor f that represents how many times the (average) sampling
distance dc is contained within the extent e:

f =
e

dc
(5.6)

Together with Equation (5.5), we can now determine the number of samples
c necessary per dimension i by

ci = 2
ei
ri
. (5.7)

The fundamental relationship between a continuous phenomenon of range
r, the extent e and the number of observations c1 necessary to capture it, is
thus defined. It can be used to estimate sampling density for one dimension.
To generalize the concept in order to be applicable for multiple dimensions,
we calculate the product of its n dimension-wise representatives by

cn =
n∏

i=1

2
ei
ri
. (5.8)



86

This expression is used to estimate the minimum number of uniformly dis-
tributed random samples on multidimensional continuous fields as a function
of their values for extent and range for each dimension. Thus, we can de-
termine an appropriate sampling density for arbitrary initial configurations of
sill and range in the random reference model. The approach is experimentally
validated in Section 6.1.

Result: Multidimensional Point Set Depending on the simulated or
actual process of sampling, the set of observations represents the degree of
knowledge about the observed phenomenon that is available. The geosta-
tistical properties (mainly the parameters sill and range) of the theoretical
variogram are not necessarily equal to the ones within the observed region,
therefore it is also called the regional variogram [Webster and Oliver, 2007].
In practice however, the properties derived from the observations are often the
only ones available and thus have to be worked with.

For a good estimation of the geostatistical properties of a field, the distri-
bution of observations should sufficiently cover all distances relevant for the
given problem to provide enough information for variogram fitting [Chun and
Griffith, 2013, Webster and Oliver, 2007]. Especially the short distance are of
decisive importance for variogram estimation [Armstrong, 1998, p. 53], [Oliver
and Webster, 2015, p. 53].

With real world data, there might be anomalies like anisotropy that will
usually materialize in the derived experimental variogram cloud. If no other
geostatistical property information is available (e.g. from previous samples),
the set of observation points is carrier of both (i) the discrete spots of knowl-
edge about the phenomenon to be interpolated between and (ii) the statistical
properties this interpolation has to be based on [Wackernagel and Schmitt,
2001].

5.3.3 Experimental Variogram Generation

The experimental variogram has already been introduced as basic geostatistical
concept in Section 4.2 and was also applied to determine the range property
of a sine-shaped signal in Section 5.3.2.
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Given a sufficient number of observations as described in the previous sec-
tion, we will now set out the process steps that are necessary to derive the
parameters of the theoretical variogram from them. Namely, these steps are
(i) the generation of the experimental variogram (this section), (ii) the aggre-
gation of the variogram points (Section 5.3.4) and (iii) the variogram fitting
(Section 5.3.5).

For better visual demonstration of the method, we stick to a two-dimensional
continuous random field generated with following parameters:

• white noise field: 150 x 150 grid cells, mean = 5000, deviation = 500

• variogram filter: separable gaussian, range of 75 grid cells, resulting
grid cell value deviation of 4.65

• sampling: 20 points (derived by Equation 5.8), uniformly distributed
• experimental variogram: 190 variogram points comprising of spatial

distance and semi-variance γ derived from the sample point pairings
• aggregation: 16 aggregates (by Equation 5.10 with b = 1.5, c = 0.8),

partitioning dimensions aggr. method: median
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Figure 5.8: Experimental variogram point cloud

As can be seen in Figure 5.8, the semivariances (ordinate) tend to scatter
more with increasing pair distance (abscissa). A spatio-temporal variogram
[Cressie and Wikle, 2011, Gräler et al., 2016] can be visualized as three-
dimensional plot with spatial distance, temporal distance and semi-variance
as axes (see Figure 4.1).

Although the number of variogram points would also allow for direct fit-



88

ting of the theoretical variogram in this example, we will apply binary space
partitioning (BSP) as aggregation approach, since its principle is more com-
prehensible with small datasets. It will be introduced in the next section.

5.3.4 Experimental Variogram Aggregation

Before the interpolation by the geostatistical method of kriging can actually
be carried out, a formal description of the spatio-temporal autocorrelation is
needed. After generating the experimental variogram as a point cloud in the
previous step, the theoretical variogram function associated with this covari-
ance function (see Section 4.3) has to be fitted to this point cloud [Müller,
1999, Brunell, 1992, Gräler et al., 2012]. The number of variogram points in
the experimental variogram nv depends on the number of samples ns by

nv =
n2
s − ns

2
. (5.9)

The subsequent and rather complex step of variogram fitting can there-
fore become too expensive for large datasets. The common solution for this
problem is to perform some aggregation that retains the general dispersion
characteristics of the original variogram points [Webster and Oliver, 2007].

Depending on the dimensionality of the observational data and the dimen-
sionality of the associated variogrammodel (spatial/temporal/spatio-temporal,
isotrop/anisotrop), the aggregation of points in the respective experimental
variogram will have to be possible with various dimensionalities to be generic.

The common structure of the experimental variogram for all dimensional-
ities is that of n independent variables (e.g. spatial and temporal distances
between pairs of observations) and one dependent variable, which is the semi-
variance γ as given by Equation 4.2.

This is also the target variable of the theoretical variogram to be aggregated
by using the spatio-temporal proximity of points as criterion for grouping.
Therefore, the common concept of aggregating the original variogram points by
using intervals of constant lag intervals [Webster and Oliver, 2007] is extended
(or generalized) by the following features:
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• Instead of using only one dimension for segmentation of the exper-
imental variogram, binary space partitioning (BSP, [Samet, 2006])
allows for multidimensional segmentation

• Instead of rigid segmentation (e.g. by constant interval size), more
flexibility is achieved by variable hyperplanes that can adapt to the
given data structure

This approach aims at a generic and robust solution for the central problem
of geostatistics: variogram fitting. It provides flexibility in terms of

• the dimensionality of the used variogram model
• the number of points of the experimental variogram
• the dispersion of points

As already mentioned, the experimental variogram is a set of points in
Rd, where d − 1 dimensions represent parameters of the particular variogram
model and one dimension represents the target variable γ. For aggregation,
all dimensions except that of γ are used for binary space partitioning, thus
generating disjunct regions with subsets of the original variogram point set.

According to its common purpose of space partitioning for search operations,
a BSP (binary space partitioning) tree usually—e.g. when implemented as k-d
tree—subdivides a set of objects into two subsets of equal number of elements.
In a recursive manner, the partitioning dimensions or axes do cycle according
to a predefined order [Samet, 2006].

For the sake of adaptivity, the partitioning method is extended to let diverse
statistical parameters control the process. Figure 5.9 illustrates critical deci-
sions within the BSP tree algorithm where statistical properties are used to
determine how the partitioning is carried out. Therefore, the algorithm keeps
track of the statistical properties of each dimension separately. So for each
set of points the minimum, maximum, extent, mean, median and variance are
calculated per dimension and can thus be used as control parameters for the
points of decision that are described below.



90

Split Dimension Split Position Termination
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Aggregation
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Figure 5.9: BSP tree partitioning process: options for control by statistical
properties

Split Dimension If there is more than one free variable in the variogram,
as is the case for spatio-temporal models, the recursive partitioning algorithm
needs to select the next splitting dimension, or, in other words, which coordi-
nate axis will be the normal vector of the next splitting hyperplane.

The statistical properties described above can be used to determine the next
dimension. So it might be reasonable to select the dimension with the greater
extent or deviation for the next split. In many cases it is appropriate to relate
this value to the one of the total set that the procedure started with to get a
relative value. This variant was also applied here.

For a uniform splitting pattern, the algorithm can also simply toggle be-
tween all dimensions without any parameter checking. This is the behaviour
of a standard k-d tree [Samet, 2006].

Within this solution, consecutive splits by the same dimension are allowed,
which might be useful for very anisotropic point distributions. More complex
definitions where several parameters and conditions are combined might also
be reasonable to adapt to such data structures, but they are not regarded here.

Split Position Once the dimension for the next split is determined, the po-
sition of the hyperplane on the corresponding axis has to be set. The statistical
properties of this particular dimension can be used for the determination of
this position.

In the case of the median value as split position, subsets with equal num-
bers of elements are obtained, which is the case for k-d trees [Samet, 2006].
Alternatively, the mean value can be used to give outliers more influence than
with the robust median. Simply selecting the middle position will result in a
regular grid, but only when split dimensions toggle and tree depth is equal for
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each dimension. All of these variants are tested and evaluated in Section 6.2
(see Table 6.1, p. 142).

Termination There are several conditions that can be used within a BSP
tree algorithm to terminate the recursive partitioning. In the context of aggre-
gation of the experimental variogram, the following are considered reasonable:

• maximum tree depth
• maximum elements per leaf
• maximum total number of leaves
• spatial extent of current leaf

Each of these variants has its advantages and drawbacks: A constant max-
imum tree depth is easy to implement, but does eventually not adapt well
to the given data structure. A constant maximum spatial extent of leaves is
also straightforward, but may produce subsets with numbers of elements dif-
fering too much. A constant total maximum number of leaves is difficult to
implement in a recursive manner if the tree should not become too unbalanced.

In order to achieve robust behaviour, more complex termination rules can
be defined by the logical combination of multiple conditions.

For this study, the termination condition of maximum elements per leaf
was implemented. From the algorithmic perspective, this condition is fulfilled
when stopping the recursive partitioning as soon as the threshold number of
elements is achieved or undercut. The condition produces statistically similar
subsets of points to be aggregated. For reasonable sizes of those subsets while
given arbitrary total amounts of elements, the logarithm-based formula

na = c · logb(nt) (5.10)

is used, where na is the total number of aggregated points to be created, nt

is the number of points in the original variogram, b is a logarithmic base that
controls the degree of decreasing, and c is a linear scaling factor. By applying
this formula, an arbitrary choice of the number of aggregations is avoided. It
adapts to the total amount of original variogram points by producing reason-
able and feasible numbers of aggregated points.
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Aggregation The preceding procedure provides n datasets of the original
experimental variogram dataset, separated by BSP hyperplanes. To actually
aggregate these sets to one point for each of them, there are several options
taken into account:

• mean value
• median value
• middle of the corresponding BSP tree partition interval

These options can be assigned individually to each of the independent di-
mensions used for BSP tree partitioning. For the target variable γ itself, only
the mean value is assumed to aggregate the dispersion correctly [Oliver and
Webster, 2015, p. 16], [Cressie, 1993, p. 59]. These variants are also tested in
Section 6.2 (see Table 6.1, p. 142).
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Figure 5.10: Aggregation of variogram points; different interval sizes result
from adaptive BSP algorithm

Figure 5.10 illustrates the BSP aggregation that is applied to the point cloud
from Figure 5.8. Since the points of the experimental variogram represent the
statistical properties of the dataset, the aggregation is supposed to be carried
out in a way that transmits, at least approximately, the significant properties
of the original point cloud to the reduced point set.

As can also be seen from the plot, the aggregated set of points is by far
less dispersed than the original variogram point cloud and already indicates
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a continuous function. Beside the geometrical properties, each aggregation
produces additional statistical data like variance or skewness that could be used
to define weights for the subsequent process step of variogram fitting [Gräler
et al., 2016]. But since the aggregations are already statistically similar due
to the termination condition of maximum elements per leaf, this mechanism is
not considered here.

5.3.5 Variogram Fitting

The aggregation of the original experimental variogram generates a dataset
of reasonable size for the fitting of the parameters of a theoretical variogram.
Because of the redundancy of data points, they will not fit the theoretical
variogram and a non-linear optimization method like Gauss-Newton has to be
used to estimate its parameters [Sun and Sun, 2015, Aigner and Jüttler, 2009].

As already mentioned in Section 4.3, the theoretical variogram is the mirror
image of the covariance function [Webster and Oliver, 2007, p. 55]. So by
fitting the theoretical variogram to the points that were aggregated from the
experimental variogram, we obtain the parameters of the respective covariance
function needed for kriging.

Generally, the problem can be defined by fitting the variogram model

γ = fp(x) (5.11)

with x being the distance (spatial, temporal or spatio-temporal) for which
the variogram γ is returned.

The Gauss-Newton algorithm [Sun and Sun, 2015, van den Bos, 2007] itera-
tively determines the vector of parameters p1, ..., pk that minimize the squared
residuals between the observations (here: the aggregated variogram points)
and the function values at the respective positions [Wang et al., 2006, Aigner
and Jüttler, 2009]. By equipping each data point with a weight wi, the process
can consider specific circumstances that are supposed to have influence on the
optimization result.

The distance to the origin of the variogram, the number of points used for
the preceding aggregation or the variance of their mean value are reasonable
candidates to define the weights [Cressie, 1985]. Since approximate equal num-
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ber of points per aggregate are provided by the BSP algorithm, the weighting
is derived from the (n-dimensional) distances to the origin.

Weighting

In order to get a good estimate of the variogram at its origin, the points near the
ordinate should be weighted stronger than the more distant ones [Armstrong,
1998, p. 53], [Oliver and Webster, 2015, p. 53]. A weighted variant of the
Gauss-Newton algorithm was implemented to achieve that higher influence
of the elements of low n-dimensional distance by defining the weights per
aggregated point by

wj =
n∏

i=1

1− dji
max(di)

, (5.12)

where dji is the distance of the aggregated point j to the origin regarding
dimension i and max(di) is the maximum of that distance that occurs in the
whole set of aggregated points. For each dimension and therefore also for the
product, the value is guaranteed to be between 0 and 1.

A smoother decrease of weight by distance is achieved by the sine-based
function:

wj =
n∏

i=1

1− sin2(
πdji

2
). (5.13)

Alternatively, to achieve a stronger differentiation of weighting between
points near to and points far from the coordinate origin, a weighting func-
tion based on a variant of the logistic function [Rasmussen, 2006] was applied
with

wj =
n∏

i=1

1− 1/(1 + exp(g(1− 2
dji

max(di)
))), (5.14)

where factor g controls the gradient. It is set to 5.0 in Figure 5.11 which
contains plots of the functions for one dimension. The weighting variants
introduced here will be evaluated experimentally in Chapter 6.
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Figure 5.11: Weighting functions relating relative distance to origin (d) to
weight (w): (1) linear, (2) sine-based and (3) logistic

The number of points, the variance, or other parameters from the preceding
aggregation process could be used alternatively or be incorporated into the
proposed weighting functions to give them some influence on the Gauss-Newton
procedure.

This variant was not implemented in the framework because it is assumed
that the combination of adaptive aggregation and distance weighting is suffi-
cient to cover this aspect for the present study. But this or similar variants
could easily be evaluated using the tools for systematic variation and evalua-
tion (see Section 5.5).
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Figure 5.12: Theoretical variogram fitted to aggregated variogram cloud

Figure 5.12 shows a Gaussian variogram model fitted by linear weighted
aggregation points. The parameters that were illustrated in Figure 5.9 are set
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as follows: split dimension: not applicable here, since variogram contains only
one spatial dimension; split position: median; termination: maximum point
number; aggregation: mean. The logistic function was used for the weighting
of the subsequent fitting by the Gauss-Newton algorithm.

As the graph reveals, the algorithm yields a reasonable fitting to the var-
iogram points at sight. The visual assessment is still an important issue of
variogram fitting [Oliver and Webster, 2015, p. 38 f.], [Armstrong, 1998, p.
54]. There are also approaches to completely automatize the fitting [Pesquer
et al., 2011, Desassis and Renard, 2013]. But regarding the sheer amount of va-
rieties of kriging and its associated parameters, the selection and fitting of the
variogram is therefore a very complex task for which no established solution is
available yet (see Chapter 7).

Multiple Initial Values: Hybrid Approach

As is a common problem for non-linear optimization algorithms, also the
Gauss-Newton method is not guaranteed to converge for every constellation
of initial values [Sun and Sun, 2015, p. 63]. The aggregation of the vari-
ogram points and the weighting scheme already reduces this risk, but does not
completely exclude it.

To address this problem and to get better results in case of multiple local
minima, the optimization procedure is started with varying initial parameter
values. The variants are generated by n-dimensional subdivision of the param-
eter value or values. Thus, a set of starting parameter variants of size x · n is
generated, where x is the number of subdivisions per dimension and n is the
number of dimensions of free parameters.

It is not the whole value domain that is used as initial interval to be sub-
divided per dimension. Instead, the thresholds are determined by robust esti-
mation based on quantiles.

Given this set of initial parameter settings with predefined criteria when
the iteration shall cease—for both cases: sufficient converging as well as di-
verging behaviour—leads to a set of result values with usually different values
of residuals.

In the ideal case, all starting parameter variants converge to the same result,
which is only the case for very robust constellations. Except for ill-conditioned



97

constellations of sampling, this approach provides a robust estimate of the
parameters by selection the iteration solution with minimum residuals. Local
minima are more likely to be found this way.

Depending on the sensitivity of the given constellation, the amount of initial
values can be of decisive importance for achieving an optimal solution. With
too many variants, however, this complex process might exceed the computa-
tional capacities.

In the experiments carried out in Section 6.2, a moderate amount of variants
was sufficient to yield feasible solutions. For situations where this is not the
case, more sophisticated methods to improve convergence should be applied
[Andradóttir, 1998, Sun and Sun, 2015, Schittkowski, 2002].

5.3.6 Kriging

Once the appropriate variogram model is determined, the interpolation pro-
cedure itself includes the inversion of the covariance matrix (once per model)
and its application to determine optimal weights by which each observation
contributes to the estimated value (once per interpolation). Based on these
weights, kriging also provides a confidence estimation for each interpolated
point. The general proceeding of kriging has already been set out in Chapter
4.

With big numbers of observations, the inversion of the covariance matrix
might produce critical workloads due to its complexity of O(n3) [Gelman et al.,
2014, p. 503], [Sun and Sun, 2015, p. 356]. There are various approaches that
address this issue [Wei et al., 2015, Henneböhl et al., 2011, Pesquer et al.,
2011, Cornford et al., 2005, Barillec et al., 2011, Osborne et al., 2008].

In this work, an approach is introduced that addresses the problem of com-
putational burden and the problem of continuous integration of new obser-
vations into an existing model (see Section 5.4.2). It exploits the estimation
variance (kriging variance) that is provided by no other interpolation method
[Oliver and Webster, 2015, p. 1].
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5.3.7 Error Assessment

Given the same extent and resolution for both the continuous reference ran-
dom field and the one derived by interpolation of observations, the deviation
between those two models can easily be calculated. The RMSE provides a
compact indicator for the overall quality of observation and interpolation. The
effect of changed method variants or parameters (see Section 5.5) can thus be
quantified.

An error map or map of the “second kind” [Meyers, 1997, p. 464] of the
same resolution can help to reveal more subtle patterns indicating systematic
flaws of the monitoring process (see Section 6.6).

Representing a single-number summary of the error map, the indicator is
given by

RMSE =

√∑n
i=1(ŷi − yi)2

n
, (5.15)

where for each grid cell i, ŷi is the value of the derived model, yi is the value
of the reference model and n is the total number of grid cells of the model.

Unlike the situation in a real world monitoring scenario where interpolation
quality has to be estimated by approaches like cross validation [Gama and
Pedersen, 2007, p. 147], the synthetic reference model of arbitrary resolution
allows total transparency of the errors caused by sampling and interpolation.
While the RMSE will in most cases be sufficient to compare the interpolation
quality of different monitoring process variants, the more verbose represen-
tation of the error as deviation map can provide valuable hints for further
improvement.

Geometric patterns within the deviation map that significantly differ from
pure random fields can indicate potential for systematic improvement of the
monitoring process. So different patterns in the error map might provide
visual hints to particular deficits in the monitoring process that produced the
associated model.
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• A predominantly high error value that is only mitigated regionally
at the spots around the observations might indicate an insufficient
density of samples

• Distinctive border areas of high slope (discontinuities) that separate
regions of rather homogeneous error values are a hint for an insuffi-
ciently fitted variogram model

• A rather continuous error map with moderate error values at spots of
maximum isolation from observations indicates a near optimal config-
uration of the monitoring

While the RMSE provides a straightforward quantification of model quality
that can be used to easily identify the best among many solutions, the error
map reveals subtle patterns that might contribute to more thorough investi-
gations.

Both approaches, however, do only work with synthetic models or with
phenomena that are available at much finer resolution than necessary in the
planned monitoring scenario in order to serve as reference for experimental
study. In this work, error assessment is applied to both synthetic phenomenon
models (see Section 6.2) and real remote sensing data (see Section 6.6).

5.4 Performance Improvements for Data Stream

Management

Monitoring of continuous phenomena poses several specific challenges accord-
ing to the processing and the archiving of observations. Some of them that are
considered to be crucial are addressed in this section.

So providing an interpolated grid from a set of discrete observations means
considerable computational burden if massive data or real-time requirements
(or both!) is present. Also, the seamless and efficient actualization of a calcu-
lated model by new incoming observations is indispensable for (near) real-time
monitoring systems. Both problems are addressed by the approach that is set
out in Section 5.4.2.
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Although storage costs are continuously decreasing, the archiving of exten-
sive observational data might nevertheless reach critical dimensions. Whilst
grid data as derived from interpolation provide better interoperability, retain-
ing the original observational (vector) data has several advantages (see Section
3.2.2). A compression algorithm specifically designed for such data is intro-
duced in Section 5.4.3.

5.4.1 Problem Context

The specific features introduced in the next two sections can best be considered
in the context of a monitoring system architecture as sketched in Figure 5.13.

Data Stream Engine

A
d

a
p

ti
v

e
 

F
il

te
r

Archive

a
p

p
ro

x
im

a
te

/

co
m

p
re

ss

d
e

co
m

p
re

ss
, 

g
e

n
e

ra
te

q
u

e
ry

re
su

lt

Critical State 

Monitoring

Critical State 

Definitions

alert

W
e

b
 S

e
rv

ic
e

W
e

b
 M

a
p

p
in

g

User

query

continuous update

SWE

Value Variance

sub-

scribe

Figure 5.13: Architecture of a system that processes, visualises, monitors crit-
ical states, and archives sensor data streams

The envisioned data stream engine (DSE) [Gama and Gaber, 2007] contin-
uously processes incoming observations (provided by sensor web enablement
(SWE)) and integrates them into the model that reflects the current state,
eventually as Web Map Service (WMS) [Blower et al., 2013]. Beside the value
of interest, the model also keeps track of the deviation map as “map of the
second kind” [Meyers, 1997, p. 464].
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As already mentioned in Section 4.5, this deviation map or variance map
can be used for several purposes. It can indicate insufficient confidence for the
critical state monitoring. For massive loads of data, it can be used as adaptive
filter to only let non-redundant observations pass. Its role as weighting schema
for the merging of sub-models—in order to mitigate computational workload
or to support a continuous update by new observations—is subject of the next
section.

From the user’s perspective, the monitoring system should provide the
model at arbitrary points in space and time. So the data prior to the cur-
rent model need to be archived and retrieved appropriately. As indicated by
Figure 5.13, the process of compression and decompression ought to be hidden
from the user who usually accesses the data by some (web) interface.

Based on web services, a data stream engine (DSE) should provide interfaces
for both interactive web mapping and automated monitoring. For the latter,
critical states can be defined, subscribed to a specific database and checked
against the current map regularly. Such definitions can refer to values (e.g.
for an alert after an exceeded threshold), confidence estimations (when more
measurements are necessary) or both combined (high risk of exceeded threshold
[Guttorp, 2001, p. 24]).

For queries on historical data and for long-term analyses, an archive con-
taining data that are compressed by approximation is maintained alongside
with the real-time services. When queried, it is decompressed and provided as
usual map.

The methodologies introduced in the next sections are in principle designed
to support the functionalities of an environment as sketched above.

5.4.2 Sequential Model Merging Approach

Overview

As already mentioned, the sequential merging approach addresses two common
problems in the context of monitoring continuous phenomena:

1. Reducing the computational workload for big datasets
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2. Allowing for subsequent and smooth model updates for data stream en-
vironments

The general task that these problems are associated with is to generate a
regular grid from (potentially) arbitrarily distributed and asynchronously con-
ducted discrete observations. The general interpolation problem is a subject
matter of spatio-temporal statistics [Cressie and Wikle, 2011], while the pefor-
mance issue is often also addressed by data stream management [Gama and
Gaber, 2007]. Consequently, the proposed solutions for these problems depend
much on the context they are tackled from.

Related Work

A new design of a data stream engine (DSE) that is based on k Nearest Neigh-
bors (kNN) and spatio-temporal inverse distance weighting (IDW) is suggested
by [Whittier et al., 2013].

It uses main memory indexing techniques to address the problem of real-
time monitoring of massive sensor measurements. In contrast to this approach,
we want to avoid a sub-model based on a fixed sized temporal interval. By
merging sub-models continuously, we also consider old observations if no better
information is available. This might be especially important when observations
are inhomogeneously distributed in space and time.

Trend clusters in data streams are discussed as techniques to summarize, in-
terpolate and survey environmental sensor data by [Appice et al., 2014]. Since
one main application is the detection of outliers within a rather low dynamic
phenomenon (solar radiation), the approach allows a coarse approximation by
clusters of similar values. For our purpose, a smooth representation of each
state is desirable.

In [Walkowski, 2010] the kriging variance is used to estimate a future in-
formation deficit. In a simulated chemical disaster scenario, mobile geosensors
are placed in a way that optimises the prediction of the pollutant distribution.
Instead of optimising the observation procedure itself, we exploit the kriging
variance in order to achieve efficient continuous model generation from massive
and inhomogeneous data.

The decomposition of a spatial process into a large-scale trend and a small-
scale variation is carried out in [Katzfuss and Cressie, 2011] to cope with about
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a million of observations. This solution is an option for optimizing very large
models, but is not helpful for our sequential approach with its real-time specific
demands.

A complex model of a Gaussian process (synonym for kriging) that incorpo-
rates many factors like periodicity, measurement noise, delays and even sensor
failures is introduced by [Osborne et al., 2012]. Similar to this work, sequen-
tial updates and the exploitation of previous calculations are performed, but
on a matrix algebra basis. It uses kriging with complex covariance functions
to model periodicity, delay, noise and drifts, but does not consider moving
sensors.

Requirements

Concluding from the state of the problem area as characterized by the related
work above, the following requirements are considered to be crucial within the
scope of this work:

• Locally confined, smooth and flexible updates of interpolated models
• Preserving confidence estimate (kriging variance) as crucial informa-

tion also for adaptive filtering and critical state checks (see Section
4.5)

• Provision of immediate coarse results generated by subsets of obser-
vations

• Preserving of preceding computational effort

Principle

The sequential merging approach that is set out here exploits the variance map
provided by kriging using Equation 4.11. Depending on the purpose, it can
also be represented as deviation map (see Figure 5.14).
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Figure 5.15: Merging of models by using weight maps: the values (l) and
variances (r) of two models are merged to a resulting model that combines the
information they contain (bottom)

Figure 5.14: Kriging result with value map (l) and corresponding deviation
map (r). The red dots represent the observations

The variance or deviation map represents the degree of confidence in the
interpolated value and therefore can be used to calculate by how much it
should contribute to the result value when combined with another model of
the same region but with different observations. The principle of this approach
is visualized in Figure 5.15

The approach uses the inverse variances as weights [ín Martínez and Sánchez-
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Meca, 2010] when fusing two grids generated from different sub-sets of ob-
servations of a region. When applied sequentially, this method successively
“overwrites” the former grid, but only gradually and in regions where the new
grid’s variance is significantly lower. The variance maps themselves are also
fused (eventually taking into account temporal decay), thus representing the
confidence distribution of the new model and determining its weighting schema
for the subsequent fusion step.

The process is performed for each grid cell by deriving the weight p[i] from
its variance with

pi =
1

(σ2
i )d

, (5.16)

where σ2
i is the kriging variance of each grid cell, and d is an optional

parameter to control the grade of weight decay relative to the variance of the
model to be merged with. This factor might be adjusted according to the
spatio-temporal dispersion of the given dataset. When set to 1.0, it is simply
an inverse-variance weighting [ín Martínez and Sánchez-Meca, 2010].

With values and weights for each grid cell, the merged model values xi+1

can be derived from the current sub-model values xi and previous model values
xi−1 by

xi+1 =
x[i] · p[i] + x[i−1] · p[i−1]

p[i] + p[i−1]

. (5.17)

Equation 5.17 assumes two models to be merged, which could be applied
for continuous update in a real-time monitoring scenario. For the more general
case with arbitrary number of models, the expression

x̄ =

∑n
i=1(xipi)∑n

i=1 pi
(5.18)

provides the weighted result value x̄. Respectively, its variance can be
determined by

σ2
x̄ =

1∑n
i=1 pi

. (5.19)

In the case of real-time monitoring where the current model continuously has
to be merged with new models generated from new observations, a temporal
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decay should be applied to the preceding model. A simple exponential decay
factor fd can be applied by

fd = b
(
t−t0
rt

)
, (5.20)

with t− t0 representing the time passed since the last model was generated,
and b being the fraction that shall remain after time range rt. In principle,
any other covariance function (see Section 4.3) might be used to define the
temporal decay rate.

Partitioning Large Models: Performance Considerations

Apart from the continuous update mechanism as assumed above, the proposed
method can also be used to partition large models and apply it in a divide-
and-conquer manner [Cormen et al., 2005].

Kriging comes along with a high computational complexity—caused by the
inversion of the covariance matrix—of O(n3) [Sun and Sun, 2015, p. 356],
[Osborne et al., 2012, Barillec et al., 2011], with n being the number of sam-
ples. Considering this fact in the context of massive data load in combination
with (near) real-time requirements, this can become a severe limitation of
the method. Hence, when sticking to its essential advantages like the kriging
variance, the merging strategy can be applied to mitigate the computational
burden while delivering comparable results.

The original set of observations is separated into s subsets to which the
kriging method is applied separately. The resulting sub-model grids are in
the same area as the master model that contains all points. To consider all
measurements in the final model, the sub-models are sequentially merged with
their respective predecessor, as shown in Figure 5.16.

Alternatively, all sub-models might be calculated before they are merged in
one step using Equation 5.18. This approach would, however, not provide the
advantage of an immediate—albeit coarse—result. Since the linear combina-
tion of values is not equivalent to the subsequent variant, the resulting model
will also differ. With the applicability for continuous updating of real-time
systems in mind, only the sequential approach was investigated further here.

As is the case for any approximative solution, there is a trade-off between
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performance gain and resulting accuracy. As for other cases in this work, the
loss of accuracy is quantified by the Root Mean Square Error (RMSE) against
the master model.

Krig-
ing

merge

by

weight

Krig-
ing

Krig-
ing

Kriging
(Master)

RMSE

Master-
Model

Sub-Models

merge

by

weight

Figure 5.16: Sequential calculation schema: model partitions calculated sepa-
rately and merged sequentially; the loss of accuracy induced by this approxi-
mation is indicated by the RMSE

In a spatio-temporal context, the segmentation should be performed with
respect to the order of timestamps, thus representing temporal intervals per
sub-model. This also applies to real-time environments where subsequent mod-
els are to be created continuously.

For a pure spatial model, the subsets of points can be generated randomly.
Here, the order of sub-models does not represent the temporal dynamism of
the phenomenon, but rather a utilisation level of information with associated
estimated accuracy. This is also the case for the configuration as introduced
below.

The segmentation and associated sequential calculation limits the potential
complexity of O(n3) to the size of each subset s. This can be set as a constant,
but could also be dynamically adaptive to the data rate. In any case, there
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should be an upper bound for the size of sub-models to limit the computing
complexity.

While doing so, the merge procedure itself can be costly, but grows only
linearly with n and can also easily be parallelized. Thus, it is not substantially
critical for massive data.

The theoretical computational complexity of this approach is compared to
the one of the master model calculation in Figure 5.17. As can be seen from
the formula given in the lower part of the figure, the reduction of complexity is
achieved by removing n from cubed terms (except n mod s, which is uncritical).
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Figure 5.17: Theoretical computational complexity of master model calculation
(blue line) vs. the sequential calculation method (red line); n = all samples, s
= size of sub-model, c = merging effort

Assuming this merging procedure, spatially isolated or temporally outdated
observations can keep their influence over multiple merging steps, depending on
the decay function (Equation 5.20). This is especially helpful when no better
observations are available to overwrite them. Nevertheless, with the kriging
variance, the growing uncertainty of such an estimation can be expressed,
which can then be considered where it appears relevant for monitoring and
analysis.

Apart from some loss of accuracy, the strategy of sequencing comes along
with several advantages. So it can be used to calculate large datasets with
less computational effort. This can be carried out while, in principle, the
advantages of kriging like the unbiased and smooth interpolation of minimum
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variance and the estimation of uncertainty at each position, are retained.
Given a continuous sensor data stream, this approach can integrate new

measurements seamlessly into the previous model at flexible update rates. An
experimental evaluation of this concept will be presented in Section 6.3.

5.4.3 Compression and Progressive Retrieval

Overview

Data compression is one key aspect of managing sensor data streams. Notwith-
standing the technological progresses concerning transfer rate, processing power
and memory size: they tend to be outperformed by the ever-growing amount
of available observations [Gama and Gaber, 2007].

The increased mobility of sensors due to miniaturization and improved en-
ergy efficiency extends their capabilities and therefore their areas of applica-
tion. On the other hand, more advanced techniques of data processing and
analysis are required to exploit these new opportunities. For achieving high
efficiency, compression methods should take into account the specific structure
of the data they are applied to.

Sensor observations typically describe continuous or quantitative variables
in multiple dimensions like latitude and longitude, time, temperature, pressure,
voltage, etc. [Rodrigues et al., 2007, Blower et al., 2013]. When these data
tend to be stationary in space and time, there is high potential for compression:
the actual values within a confined spatio-temporal region usually cover only
a small range compared to the domain represented by the respective standard
data type like floating-point number.

In order to exploit this circumstance for compression, a partitioning of ob-
servations by spatial, temporal or other criteria (or a combination of them) into
data segments is carried out. The creation of such data segments is already
reasonable for storage and retrieval using spatial or spatio-temporal databases.

One central feature of the proposed concept is that it supports progressive
data loading for applications that do not (immediately) need the full accuracy
of the queried data. This is especially useful for environments with limited
transmission rate, image resolution and processing power like for mobile com-
puting.
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For this purpose, a recursive binary subdivision of the multidimensional
value space is suggested. For a given level of progression, an identical accu-
racy (relative to the total range of values) can be achieved for each dimension.
When using a database as a sink, it is reasonable to store those data seg-
ments as BLOBs (Binary Large OBjects) indexed by the dimension(s) used
for partitioning.

Queries defined by (spatio-temporal) bounding boxes then have to be pro-
cessed in two steps: First, the data segments affected by the query are iden-
tified. In the second step, the data segments are progressively decoded and
transmitted until the required accuracy (e.g. for scientific analysis, web map-
ping or mobile computing) is achieved.

Related Work

There are other compression techniques in the context of sensor observations
that are discussed in literature, which are introduced in the following.

A Huffman encoding is applied to differences of consecutive measurements
thus achieving high compression ratios in [Medeiros et al., 2014]. This method
works very efficiently with time series of single sensors for one dimension with
small changes between consecutive observations.

A more adaptive approach of Huffman encoding is introduced by [Kolo et al.,
2012], where data sequences are partitioned into blocks which are compressed
by individual schemes for better efficiency.

In [Sathe et al., 2013] various compression methods are introduced, mainly
known from the signal processing literature. Those are restricted to one mea-
surement variable of one sensor.

A virtual indexing to cluster measurements that are similar in value but not
necessarily spatio-temporally proximate are proposed in [Dang et al., 2013].
After this rearrangement, the data are compressed using discrete cosine trans-
formations and discrete wavelet transformations.

The compression of multidimensional signals is covered by [Duarte and
Baraniuk, 2012] and [Leinonen et al., 2014]. Both works apply the Kronecker
compressive sensing approach exploiting sparse approximation of signals with
matrix algebra and is of high computational complexity.

Octree subdivision is applied by [Huang et al., 2008]. It exploits the proxim-
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ity of values that often corresponds with spatial proximity within octree-cells.
The focus here, however, is 3D visualization with specific coding techniques
for colors and meshes of different detail levels instead of multidimensional con-
tinuous fields.

Requirements

The works listed above make use of the strong correlation of consecutive sen-
sor measurements for compression. The compression method introduced here
does not presume such order. Instead, it addresses the following requirements
simultaneously:

• The compressed units of data are to be organized as spatio-temporally
confined segments suited for systematic archiving in spatial/spatio-
temporal databases

• Diverse data types, namely Double, Integer, DateT ime and Boolean
can be compressed losslessly

• Compression/decompression of multiple data dimensions is performed
simultaneously

• Within one data segment, observations are compressed independently
(no consecutive observations of single sensors tracked by their IDs are
considered) and thus can handle data from mobile sensors that are
arbitrarily distributed in space and time

• Data can be decoded progressively, e.g. for preview maps or applica-
tions with limited accuracy demands

• Computational cost for coding/decoding is low (O(n))

Principle

The principle that is applied for the compression method is derived from the
Binary Space Partitioning tree (BSP tree, [Samet, 2006]). Unlike its common
utilization for indexing, it is here used as compression method that is applied
to each single observation in a dataset. It does not presume high correlation of
consecutive observations (time series), like e.g. Huffman encoding does [Kolo
et al., 2012, Medeiros et al., 2014]. Consequently, the algorithm does not need
to keep track of individual sensors within a set of observations, but encodes
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each observation individually within the value domains given per variable di-
mension.

The general idea behind the design is to encode observations describing a
continuous phenomenon within a (spatio-temporal) region. The focus is on
the representation of the continuous field as a whole, not on the time series
of individual sensors. This in mind, it appears reasonable to filter out ob-
servations that do not significantly contribute to the description of the field
before long-term archiving of the data. When embedded into a monitoring
system, the approach will perform best after some deliberate depletion based
on spatio-temporal statistics (see Section 5.4.1 and [Lorkowski and Brinkhoff,
2015a]).

Progressive decompression can support different requirement profiles and
is thus another important design feature of the approach. For some applica-
tions, it might be reasonable to give response time behaviour (at least for first
coarse results) a higher priority than full accuracy after performing one step of
transmission. The specific structure of the binary format supports this claim.

Binary Interval Subdivision

For each n-dimensional set of observational data, the n-dimensional minimum-
bounding box over the values is determined. (In the following, the minimum
and the maximum value of a dimension are denoted by min and max, respec-
tively.) The interval [min,max] will be called value domain. It is entailed in
the domain that is covered by the corresponding data type.

Assuming the region of interest to be spatially and/or temporally confined
and the phenomena observed to be of stationary character like temperature,
there is a good chance for the value domain to be relatively small. Thus, a
high resolution is achieved while requiring relatively few bits of data by using
the multidimensional recursive binary region subdivision.

The principle is depicted for one dimension in Figure 5.18, where an interval
is recursively partitioned by the binary sequence 0 − 1 − 1. The circle with
double arrow represents the position within the interval with its maximum
possible deviation defined by that particular sequence of subdivision steps (in
the following also called levels).
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Figure 5.18: Binary space partitioning to determine a point (with maximum
deviation indicated by arrows) within a value domain

As can easily be concluded from Figure 5.18, the number of necessary bits
depends on both the required absolute accuracy and on the value domain.

The considerations above provide a one-dimensional perspective on the
problem. For sensor data streams, this principle has to be applied to spe-
cific data types common in this context.

Supported Data Types

In a sensor web environment, the collected data can in principle be of nominal
scale (e.g. type of substance), ordinal scale (e.g. Beaufort wind force), interval
scale (e.g. date and time) and a ratio scale (e.g. temperature in kelvin)
[McKillup and Dyar, 2010, p. 16].

In the domain of data management and programming, this kind of infor-
mation is usually represented by the data types Integer, Float or Double,
Boolean and DateT ime. Within a dataset or observation epoch, the actual
data range is usually only a small fraction of the range covered by the respec-
tive data type.

Since the data types mentioned above have different characteristics, they
will have to be considered specifically when applying the multidimensional
progressive compression.
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Double/Float The compression is most straightforward for this data type.
The binary tree depth n can be determined by:

n = log2(
d

a
) (5.21)

where d is the extent of the value domain (max−min) and a is the accuracy
or maximum deviation.

Within a multidimensional setting, the relative accuracy of each dimension
is equal for equal n, while the absolute accuracy also depends on the size of
its respective value domain.

Thus, when performing the compression synchronously for all dimensions
with each step or level, as suggested here, equal relative accuracy for each
dimension is achieved. This does not apply when one dimension has already
reached its maximum bit depth, while others still have not (see Listing 5.1) or
when particular dimensions have more than one bit per level to achieve faster
convergence (see Listing 6.4 in Section 6.4).

In the case of a Float/Double data type, the interval depicted in Figure
5.18 directly represents the minimum and maximum of the value domain, and
the double arrow represents the accuracy or maximum deviation reached at
the particular level (here: 0− 1− 1).

Integer Although at first glance the data type Integer ought to be less com-
plex, it is in fact somewhat more difficult to handle with respect to progressive
compression. First, the fencepost error has to be avoided when compressing/
decompressing to the last level. So if an interval shall represent three integer
segments, as depicted in Figure 5.19, it has to be extended to four segments
before calculating the value domain to achieve a correct representation on the
scale.



115

1 2 3

1 2 3 4

Figure 5.19: Fencepost error problem for Integer values

If Integer numbers are used for nominal scales (e.g. for IDs), coarse indi-
cations within the value domain are maybe rather useless. For that reason it
might be necessary to evaluate to the complete bit depth with the first com-
pression step. If a nominal value domain requires the maximum number of
bits to be represented (see Listing 6.3 in Section 6.4), all data will have to be
transmitted completely before the Integer value of this dimension is resolved.
For more flexibility, individual bit lengths per step or level for each dimension
are possible (see Section 6.4).

Boolean Boolean values can be seen as a special case of Integer with a
range of 2. Consequently, only one step or level is needed to express the one
bit of information (last column in Listing 6.3, Section 6.4).

DateTime Unlike the Integer type, the DateT ime type appears much more
complex at first glance than it is in handling. This is the case because it
can be interpreted (and also is usually represented internally) as ticks (e.g.
100 nanoseconds) elapsed since some reference point in time (e.g. 01.01.0001,
00:00:00 h). This internal value (usually a 64-bit Integer) is provided by
most libraries and can be used to handle the DateT ime data type as normal
Integer or Double for compression. Usually, time spans within a dataset of
observations are tiny compared to the one covered by the DateT ime type, and
the necessary temporal resolution is also by far lower than that of this data
type. Thus, the compression rates for this particular data type are usually
high.

The data types listed above usually cover the most information found in sensor
data streams. Depending on the particular structure of a dataset, differing
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compression algorithms might provide better efficiency.

Compression Features

Based on the common principle of compression for the different data types, the
specific features facilitated by that principle will be set out in the following.

Parallel compression of all Dimensions One central feature of the pro-
posed compression format is the progressive retrieval of sets of observations
with increasing accuracy with each step or level. The general format is shown
in Listing 5.1 which displays the compression format for seven dimensions of
one observation.

i o
dxyztvn
-------
1010111
101000
100001
010001
111011
0010 1
00 0 1
01 0 0
10 0 1
0 1
1
0

Listing 5.1: Binary compression format for progressive sensor data storage
(column names and values to be read vertically downwards); after its name,
each column contains the binary representation of the value dimension with
increasing accuracy per step

Each column entails one value dimension and each row represents one level
of progressive coding/decoding. The bitstream of a particular dimension ter-
minates at the level where its preset resolution/accuracy is reached. For the
data type Boolean (right column: on) this is already the case after the first
step or row.

Unlike the structure displayed in Listing 5.1 for visualization, the actual
binary format does not contain blank positions, but only the data bits. There-
fore, for decompression it is necessary to consider the format structure to have
each bit assigned to the correct dimension.
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Due to its general structure, with increasing row numbers this format tends
to decrease in data volume per row and finally contributes to the accuracy of
the dimensions with highest predefined resolutions only.

Flexible Bit Length per Row Given the structure described above can
lead to a situation where a particular dimension might not be determined at
desired accuracy until the last row is reached. Most of the data might have been
transmitted unnecessarily because a low accuracy would have sufficed for the
other dimensions. This situation might particularly be the case for IDs (first
column in Listing 5.1 and 5.2) or nominal scales. It might be indispensable to
receive their exact value at an early stage of the stepwise transmission.

As solution for this problem, the bit lengths per row can be set individually
for each dimension (see column id in Listing 5.2). Thus, the value of a dimen-
sion can converge much quicker towards its actual value with each step. In
the extreme case, the exact value can already be provided with the first step
of transmission (as it is always the case for binary values). This option can be
useful when the IDs of observations are needed immediately for visualization
or mapping with other data sources.

i o
d xyztvn
---------
111010111
10001000
10100001
00010001

11011
010 1
0 0 1
1 0 0
0 0 1
1

Listing 5.2: Binary format with flexible bit length per dimension; here, dimen-
sion id is coded with three bits per row reducing the necessary rows to four
instead of twelve

Progressive Decompression As a consequence of the special data struc-
ture introduced here, the decompression process must permanently keep track
of the actual bit configuration and the number of bits processed so far. With
each new row transmitted, there is an improvement of accuracy (the factor
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depending on the number of bits per row) for each dimension. In an environ-
ment with bandwidth restrictions, this progressive method provides immediate
coarse results, e.g. for visualization. With the last step, the data is transmitted
completely lossless according to the predefined resolution. This is not always
necessarily the best choice since the data might not be needed immediately
in full accuracy but rather within shorter transmission time (responsiveness).
The transmission can therefore be aborted at any level.

An experimental evaluation of the compression concept set out here is carried
out with buoy data in Section 6.4.

5.5 Generic Toolset for Variation and Evalua-

tion of System Configurations

So far in this work, the purely operational aspects of the monitoring like sam-
pling, interpolation, sequencing and compression have been paid attention to.
Yet, beyond this perspective, also the quality and efficiency of different moni-
toring scenarios are subject to this thesis.

Variations of methods and associated parameters will affect the output of a
simulation scenario. A continuous optimization of the whole process can only
be carried out with appropriate output performance indicators expressing both
quality and efficiency.

In this section, a general concept for systematic variations of methods and
parameters and their effects on output parameters is introduced. It abstracts
from the particular algorithm at hand and provides a generic toolset for sim-
ulation environments.

5.5.1 Context and Abstraction

As already argued in Chapter 3, a monitoring system should be designed to
provide sufficient model results with the least resources possible. The aspect of



119

resource requirements and performance indicators of a monitoring is illustrated
in Figure 5.20.
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Figure 5.20: Elements of monitoring considering the limited ressources time
and energy

The phenomenon needs to be observed and the observational data have to
be transmitted to the system. The system processes and archives the data in
a way that provides information of higher generality, abstraction and therefore
of higher value to applications. Specifically, the improvement takes place on
several levels:

• coverage
• accuracy
• density
• interoperability
• interpretability
• usability

In other words: by deploying resources for computation and transmission
(time and energy), a monitoring system transforms raw observational data
to valuable information according to the aspects listed above. Using these
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resources efficiently is the obligation of any monitoring system.
Applications of various kinds can make use of such higher-level services

provided by the system. Details about interpolation can thus be decoupled
from the application logic [Taylor et al., 2009, Evans, 2003]. The concept of
a field data type [Liang et al., 2016, Camara et al., 2014] is one of the key
features to achieve this goal.

The overall objective is to provide knowledge about the phenomenon that
is in some way useful. Since resources for such a monitoring are limited (see
Section 3.3), the challenge is to find some good compromise between cost and
benefit.

The means to establish such a monitoring are sensors, communication net-
works, computers, algorithms and their associated parameters, and standards
for transmission and interoperability, as depicted in Figure 5.20. The hardware-
equipment of a monitoring system should be configured following the principles
formulated in Section 3.4 and balancing the factors featured in Figure 3.2.

The effectiveness and efficiency of such a monitoring system need to be es-
timated in the planning phase, but also need to be evaluated and improved
when the system is operating. The most crucial decision is about accuracy,
density and distribution of observations (see Figure 5.20; also Section 3.3.2
and 5.3.2). At this stage, the degree of knowledge about a phenomenon is
determined since even the most sophisticated processing methods cannot com-
pensate insufficient sampling.

In order to be processed for a whole region, the observational data need to be
transmitted and collected within a sensor network. Appropriate transmission
protocols and data formats should be used in order to minimize time and
energy expenses.

Once the data are available in the central system, complex operations like
spatio-temporal interpolation can be performed. Hardware, algorithms and
the amount of data determine the expense in time and energy here. Variation
of algorithms and adjustment of parameters can improve quality and efficiency,
which will be stated by performance indicators. Persistent storage preferably
is carried out on a database, supporting spatio-temporally referenced data and
fostering efficient retrieval; compression (Section 5.4.3) reduces storage space
and transmission effort.
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The main processing component of the monitoring system (named ’System’
in Figure 5.20) is adding value to the observations in the sense that gaps are
filled and the provided format is by far more interoperable than the original
sensor data. In the ideal case, the phenomenon is presented as continuous
model with a good estimation of the variable at arbitrary positions in space
and time within the observed area.

Kriging also provides the estimation variance for each position, which might
be used for smooth updates and performance improvement (see Section 5.4.2),
but also as adaptive filter (see Figure 5.13). Being available in this form makes
it by far easier to navigate the data interactively or access it from applications
via a web service.

More complex services like alert system based on aggregated data (e.g.
notifying about an exceeded daily threshold for a region) can be constructed
when such an infrastructure is available. The desired quality of such services
determines the minimum costs and efforts necessary to establish them and
keep them operational. An experimental setup as introduced in this work can
significantly contribute to improve efficiency and reduce these costs.

Following the objective of balancing cost and benefit of the system, an
iterative optimization is carried out to get the best possible results from limited
resources. In the context of computing systems, the expenses in time and
energy are most relevant to be considered to achieve a result of particular
quality.

Time for processing is critical when hardware power is limited, whether for
financial or technical reasons. Energy is most critical for small battery-powered
systems as well as for big systems like mainframe or cluster computing systems.
Efficient processing can significantly reduce costs in both cases.

This section focuses on potentials for optimization by variation of algorithms
and parameter settings. To systematically and reproducibly evaluate the effi-
ciency of each variant, a generic concept for a quantification of the following
aspects is needed:

• workload
• resources
• output indicators
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The workload is the computational effort that is necessary to process a
particular input dataset by a particular algorithm with a particular corre-
sponding parameter set. The resources represent the computational hardware
that is available for this task. The indicators quantify the output quality and
other benchmarks like expenses in time and energy that are necessary for a
particular constellation of the two other components. Algorithmic optimiza-
tion and parameter tuning affects the quantity of workload and therefore also
the output indicators [Beven, 2009, p. 11]:

For each combination of parameter values, we can calculate a
model response.

Doing so while overlooking the effects that different parameter settings have
on the different output indicators can then be regarded as an evolutionary
process towards better and better solutions [Gandibleux et al., 2004].

One important intention behind the proposed model is to quantify efficiency
improvements independently from the hardware configuration that the simula-
tion is currently calculated on. When this quantity is combined with a concrete
hardware configuration, expenses in time and energy can be derived.

Especially for wireless systems, the estimation of the actual temporal and
energetic expenses on a particular hardware constellation can be crucial in the
planning phase. Such a transfer of processing expenses can only be carried out
with a generic concept for computational workload, which is introduced in the
next section.

The automatic variation of algorithms and corresponding parameter settings
is the second objective necessary for systematic evolutionary improvement. In
order to handle and evaluate configurational settings of arbitrary complexity,
a generic hierarchical structure is introduced in Section 5.5.3.

Together, the two components form a powerful toolset to systematically test
and evaluate numerous configurations concerning hardware and algorithms in
complex processing scenarios.

5.5.2 Computational Workload

When processing tasks are so complex that their execution might exceed crit-
ical resource thresholds, the resource requirement for a particular workload
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(or job, meaning “information-processing task” [Ferrari, 1978, p. 225]) is often
specified by execution time on a particular machine. It is easy to obtain and
for many purposes provides a sufficient estimation.

This kind of metric has, however, several drawbacks because it strongly
depends on the system it was actually measured on. Given the hardware
specifications of this system, it might appear easy to predict the execution
time for a system with different hardware. In practice, however, it can not
simply be concluded that, e.g., double CPU clock speed means half execution
time etc. Many other factors like bus frequency, amount of memory, number
of processor cores, and implementation details of the program will also affect
the overall performance [Fortier and Michel, 2003].

From a practical viewpoint, it might not pay off to consider all of those
factors right away. Instead, a model should initially contain only the most
influential factors and be equipped by additional factors only if it proves to
be inadequate [Lavenberg, 1983, p. 8]. With respect to this principle, the
properties to be considered in this work are the CPU speed, the number of
logical processors and the capability of critical code sections to run on multiple
threads.

In order to predict the performance on different platforms, the central ob-
jective is to describe a particular computational workload in a way that does
not strongly depend on the execution environment. The central idea to achieve
this is to decouple the logical instructions from the physical resources like CPU
speed [Ferrari, 1978, p. 225]. This separation makes it possible to estimate
the processing time for a properly described workload without actually having
to execute it on the particular machines.

This can be an indispensable information when some particular response
time has to be granted for a monitoring service and sufficient hardware must be
deployed. Such considerations can even be more important for wireless sensor
networks since workload quantity is, at least to a certain degree, proportional
to energy consumption on identical hardware.

As a consequence of the considerations above, the workload model and the
execution environment or hardware system model have to be defined sepa-
rately, but with associations to each other according to logical and physical
properties and resources. A prototypic realization of this general concept is
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given by Figure 5.21.
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Figure 5.21: Generic structure to quantify computational cost: class Workload
represents the machine-independent workload quantity units (as composite
aggregation [Larman, 2001, p. 414 ff.]) with differentiation between paralleliz-
able and non-parallelizable sequences; class Hardware specifies performance-
relevant properties of a processing unit; class Cost determines the expense in
time and energy resulting from such a given association between workload and
hardware.

The central feature of this structure is the systematic differentiation and ag-
gregation of code segments according to their parallelization capability. This
is of primary relevance because modern computer systems increasingly utilize
parallelization [Cormen et al., 2005], and, consequently, so do complex appli-
cations like spatial interpolation [Pesquer et al., 2011, Wei et al., 2015, Jardak
et al., 2010]. In principle, the same pattern is applicable in scenarios that work
with graphics processing units (GPU) [Henneböhl et al., 2011].

In order to obtain an abstract and machine-independent description of a
particular workload, all of its logical instructions need to be counted while
keeping track of their capability for parallelization. Within a complex com-
puting task, there will usually be sequences that are implemented using paral-
lelization, but also ones which do not, for example, because it is not possible
(serial algorithms) or because the expected efficiency gain does not justify the
implementation overhead.

By defining the total computational cost as a composition of sub-portions,
as indicated by the UML class diagram (Figure 5.21), it is possible to divide
the entire workload into portions that can be specified individually according



125

to their parallelization capability.
Assuming the temporal effort for a particular hardware configuration as

metric, these portions sum up to the entire workload by

t =
n∑

i=1

gci
f · fc · thri · throi

, (5.22)

where gci is the computational workload of the portion i of the algorithm,
expressed as unit gigacycles (billion processor cycles), thri is the number of
threads this portion can be calculated with (will be one for non-parallelizable
parts) and f is the CPU clock frequency in GHz. In addition, to take into
account product-specific differences in the number of instructions that can be
processed per cycle, the factor fc is introduced. It might either be determined
experimentally or derived from product specifications. With throi, the over-
head of multithreading is also considered for each portion of code. It is set to
1.0 if multithreading is not carried out.

Equation 5.22 represents the class Cost from Figure 5.21 by combining
the machine-independent parameter gci with the other, machine-dependent
parameters.

The quantity gigacycles might be obtained or estimated in different ways,
e.g., by using external performance evaluation tools. Integrating this task into
the development process—i.e. into source code—provides maximum control
and extensibility [Smith, 2007, p. 419 f.]. For that reason, the approach was
also chosen for the framework introduced here.

For the experimental evaluation as set out in Section 6.5, the quantity gi-
gacycles is obtained by the C++ function QueryProcessCycleTime that is
imported as external code to the C# environment. Although the term time
within the function name indicates the physical unit, it actually provides the
number of all CPU cycles of the calling process since it started. The function
sums up the cycles from all running threads, so this is the value that is to be
stored as attribute of the Workload item as defined in Figure 5.21, with the
Parallelizability attribute set to true if implemented accordingly.

Given a set of Workload objects that were deliberately registered with re-
spect to the capability of parallelization of the respective code, it is straightfor-
ward to translate this structured quantity into processing time on a particular
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hardware (Equation 5.22).
While consumption of time is crucial for complex processing tasks and real-

time monitoring applications, the consumption of energy is especially critical
for battery-operated devices as used in wireless sensor networks.

To check the operability of such a system and to optimise it according to
energy efficiency, it might be necessary to estimate the energy consumption
for a particular hardware configuration. Therefore, a rough estimation of the
total energy consumption w, e.g. stated in the unit nanojoule that is necessary
for a particular process, can be given by the similar equation

w =
n∑

i=1

gci · wi, (5.23)

where wi is the amount of energy consumed per gigacycle in each portion
gci of the algorithm.

Individual values for each process portion can be considered where different
amounts of energy per cycle do occur, eventually depending on whether it is
parallelised or not. As already mentioned, there might also be portions of an
algorithm that can be delegated to a graphics processing unit (GPU) or field
programmable gate array (FPGA) [Liu et al., 2012], which would eventually
call for individual specification.

The aspect of energy consumption is not covered beyond this conceptual
level here. However, in the context of wireless sensor web scenarios it appears
reasonable to also simulate energy consumption per processing unit in order to
find efficient monitoring strategies. Given the general structure as described
above and as formalized in Figure 5.21, the model can easily be extended with
respect to energy consumption.

The quantities given by Equations 5.22 and 5.23 can only be seen as ap-
proximations since there are many aspects which can blur such calculations.
A closer consideration of following factors might therefore be necessary when
the concept is to be refined (see also [Fortier and Michel, 2003]):
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• hardware design: CPU, memory access, pipelining
• multithreading management overhead (synchronisation, etc.)
• processing portions delegated to a GPU
• programming language (e.g. garbage collection)
• compiler optimizations (e.g. JIT compiler effects [Nagel et al., 2005])
• operating system
• different number of instructions per clock cycle

Where necessary, these blurring influence factors can be estimated and in-
cluded into the equations. In summary, the concept of a machine-independent
workload metric is at least a rough but systematic approximation necessary
to test algorithmic variants with regard to several performance indicators for
different system configurations. It is an important contribution towards iter-
ative optimisation, especially for real-time monitoring or distributed systems
like wireless sensor networks.

5.5.3 Systemantic Variation of Methods, Parameters and

Configurations

For a monitoring scenario as set out in this work, there is a variety of method
variants, parameters and configurations that need to be evaluated with respect
to their performance. One possible approach for testing different configurations
is to vary one parameter while leaving other parameters fixed and regard the
resulting series according to some evaluation metric and thus determine the
best variant of this particular parameter [Sun and Sun, 2015]. Repeating this
procedure for n parameters reveals a set of parameter configurations which
might be considered appropriate for the given process. The number of variants
to be tested is therefore the sum of variants per parameter.

But there is a fundamental problem with this approach: There has to be an
initial configuration for all parameters for which the variation of one parameter
per testing epoch is performed. This initial configuration has often to be chosen
arbitrarily. Favourable constellations of parameters might therefore remain
undetected because they are not tested in this scenario.

Alternatively, all possible constellations of parameter settings can be con-
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sidered. The total number of tests to be executed is then the product of the
number of variants per parameter instead of their sum. This might of course
place a considerable burden on testing scenarios.

For example, varying only ten parameters by only ten values or options each
will result in 100 configurations to check for [Jorgensen, 1994, p. 61]. However,
it systematizes the process and makes it by far less arbitrary. The results
generated by such a systematic survey of variants allow for more systematic
and extensive analyses and therefore promote a deeper understanding of the
whole process that is evaluated.

In complex systems like spatio-temporal analysis tools, monitoring environ-
ments or simulation frameworks, algorithmic variants and associated variable
parameters tend to increase over time. As a consequence, manual or semi-
automated setting and evaluation of variants, e.g. by configuration files, be-
come increasingly cumbersome, error prone and arbitrary. A generic software
solution for this problem is sketched as UML class diagram in Figure 5.22.

ParameterCmpParameterLeaf

value

Parameter {abstract}

name

*

ParameterOpt

[•]a  [ ]b  [ ]c

2..*

ParameterInc

min
max
num

2..*

Figure 5.22: UML class diagram for generic organisation of configuration vari-
ants based on the composite pattern [Larman, 2001]: class Parameter as ab-
stract concept and ParameterCmp as container for structured organization;
class ParameterLeaf representing the instance actually containing the value,
concretized as option (class ParamterOpt) or as increments within an interval
(class ParameterInc)

The composite pattern supports hierarchical organisation and polymorphic
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treatment of whole-part-relationships of objects [Larman, 2001, Szyperski,
2002]. We exploit this capability of the pattern here to define a generic struc-
ture which can handle arbitrary complex configurations of parameter variants
in a uniform way. The class Parameter represents an abstract concept that can
be instantiated as a list of mutually exclusive options (class ParameterOpt), an
interval division comprising integer or float type increments (ParameterInc),
the corresponding enumeration or numerical value itself (ParameterLeaf ) or a
named composite of multiple parameters (ParameterCmp).

This pattern is chosen for its capabilities to reflect the complex hierarchical
parameter structure which is present in many systems. By using recursive
polymorphic function calls, all possible configuration variants can be created
and iterated [Szyperski, 2002, p. 83 ff.], [Mellor and Balcer, 2002, p. 227 ff.],
[Mellor and Balcer, 2002, p. 255 ff.].

With this structure it is also possible to organize parameters in sub-trees
that describe logical units within the modelled environment. So a hardware
configuration as described in Section 5.5.2 can be subsumed as composite type
ParameterCmp containing parameters for number of CPU cores, CPU clock
speed and RAM. Variation can then be carried out by each parameter (e.g. 1,
2, 4, 8 CPU cores; 1, 2, 4 GiB RAM, 1.2, 2.0, 2.6 GHz CPU clock speed) or,
alternatively, by predefined named configuration sets (e.g. Raspberry Pi® 3
Model B, Dell Precision® Tower 5810) and the corresponding detail informa-
tion parameter set. The variation can then take place by switching between
those named subsets.

With this structure, variations of preset hardware configuration can be car-
ried out just as easily as any other set of parameters within a simulation. An
estimation of processing time for machine-independently defined workloads can
then be carried out for each of those configurations. This functionality can be
important when considering the hardware equipment for a planned monitoring
system.

There might also be constellations where environmental conditions that af-
fect data transmission—like meteorological parameters—should take part in
the systematic variation. Analogous to hardware configurations, such constel-
lations can also be modelled and handled as named composite subsets.

As already mentioned, the guiding idea of the structure described above
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is to automatically generate the list of all possible configurational variants
instead of having to update such a list manually with every added or removed
parameter option. In order to generate series of simulation variants based on
this structure, it has to be integrated into the superordinate flow control of
the simulation framework.

For systematic evaluation of those variants, their output performance indi-
cators are stored in tabular form using the naming conventions of the identifiers
for algorithms and parameters (see Tables 6.2 and 6.4 in Section 6). The same
conventions are used for the directory structure the output data is stored to.
The indicator log file relates configurational variants to performance indicators
for each process run and thus facilitates deeper and more systematic analysis.

5.5.4 Overall Evaluation Concept

The main objective behind the concept proposed so far is to organize variants
of analyses or simulations and evaluate the different outcomes by one or more
performance indicators. It depends on the particular application which input
properties and which performance indicators are to be taken into account for
such experimental series.

Table 5.1 provides a representation of the general concept of such a relation.
For a wider perspective, it is extended by properties and indicators that can
be considered reasonable in the context of environmental monitoring.
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Sampl. Rate/Distr. ● ● ● ●

Transmission Medium ● ● ●
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Sensor Energy Efficiency ●

Comm. Bandwidth ● ●

Comm. Energy Efficiency ● ●

CPU clock speed ● ●

CPU logical processors ● ●

RAM ● ●

Storage ● ●

Computational Efficiency ●

D
a
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a Input Data (Amount/Format)

● ● ● ●

Data Density (Raster/Vector) ● ● ● ● ●

Compressibility ● ● ● ● ●

A
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Method Set ● ● ● ● ● ●

Parameter Set ● ● ● ● ● ●

Parallelization Capability ● ●

Compression Method ● ● ● ● ● ●

Indexing Method ● ● ●

Output 
Indicators 

Input               
Properties          

Table 5.1: Input properties (arranged by categories environment, hardware,
data and algorithm) and output indicators of complex computing systems;
their interdependencies are indicated by dots

Input Properties contains all the items and properties that constitute the
environment and monitoring system as a whole: the environmental conditions
that influence the monitoring, the hardware, the methods, tools, datasets and
formats that are used to generate the model. For a given scenario of input
properties, the Output Indicators represent the metrics that can be used to
evaluate the whole process chain. The interdependencies between those items
are specified in the following.
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Environment The observed phenomenon can be described by its dynamism
in space and time. Leaving all other elements of the monitoring system un-
changed, it only affects the accuracy of the model. If the phenomenon has
more dynamism than is covered by the sampling layout, this will affect the
model accuracy.

Changing the sampling rate affects the effort that is necessary for sens-
ing, computation, transmission and storage, but it also changes the output
accuracy. The transmission medium entails atmosphere, topography and also
potential sources of interference which affect the transmission effort that can
also be associated with energy effort. If the transmission signal strength is
deceasing [Ahmed et al., 2012] and has to be repeated due to errors indicated
by the protocol, also temporal delay may occur.

Hardware The properties of the hardware involved in monitoring are listed
in the next group of Table 5.1. Leaving factors like workload or algorithm
unchanged, the energy demand is affected by the efficiency of sensors, commu-
nication devices and processing units. The throughput per time unit depends
on hardware specifications and communication bandwidth while the effort for
transmission according to time and energy depends on the efficiency and band-
width of the communication devices.

When plenty of harddisk storage is available, time and energy performance
can be increased by providing multiple indexes, controlled redundancy and
preprocessed data (e.g. discretization of continuous fields by raster grids , see
Section 3.2.3 and Chapter 7).

Data From the data perspective, it is the amount and format of incoming
sensor data that affects most of the output indicators. The data density in
the context of the Data-group does not refer to the raw observational data,
but rather addresses archiving and retrieval. Vector data can be thinned out
deliberately while minimizing information loss under the presumed interpo-
lation method (see Figure 5.13). Raster grids can be provided statically or
dynamically in different resolutions depending on the requirements.

Having efficient transmission and storage of data in mind, the compressibil-
ity is another important factor. The structure of observational data of continu-
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ous phenomena allows for good compression rates and progressive retrieval (see
Section 5.4.3). This reduces the data volume, but goes along with extra effort
for compression and decompression, which might affect response time. This
also might affect energy resources, since compression/decompression is less ex-
pensive than data transmission [Appice et al., 2014]. The compression rate
depends on both the method and the data. Sophisticated lossy algorithms for
raster grids achieve high compression rates with small loss of accuracy [Press
et al., 2007].

Algorithm In many cases, the choice and configuration of Algorithms is
the most obvious way to influence the output indicators. The set of methods
with their associated parameters can have impact on any indicator. It is also
significant how the particular algorithm was implemented. The parallelization
capability is depending on both the implementation and on the hardware. It
primarily affects processing time and therefore response time. Because it is
entangled with data volume and accuracy, the compression method can affect
all indicators. Indexing reduces search operations and therefore saves time and
energy while increasing necessary data volume.

As has been shown above, the interdependencies between input properties and
output indicators within a monitoring system are manifold. For real world
scenarios, they might be more complex than is indicated by Table 5.1. A
systematic inventory like this, however, does support the process of decision-
making when establishing or auditing an environmental monitoring system.
Beyond the accuracy-centred model evaluation as suggested in [Beven, 2009,
p. 3], it also takes environmental, technical and resource-based matters into
consideration. Thus, it can help to systematically evolve a monitoring system
towards better quality and efficiency.

5.6 Summary

In this chapter, various methods and algorithms have been set out that are
necessary for an efficient monitoring of continuous environmental phenomena.
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Beside the central task of interpolation, also the generation of continuous ran-
dom fields, the sampling of such fields and the merging of sub-models (for
efficiency and smooth differential updates) have been addressed.

The proposed features constitute a powerful simulation environment that
is capable of automatically testing manifold modes and configurations of en-
vironmental monitoring. In order to facilitate this task of carrying out and
evaluating experiments with multiple configurations, a generic software solu-
tion has been proposed. It automates configurational permutation and relates
parameter settings to output datasets and output indicators in order to sys-
tematize the evaluation process.

The simulation experiments that are introduced in the next chapter have
been carried out to evaluate some of the crucial methods that were introduced
here. The tool for systematic variation and evaluation has been used exten-
sively in these experiments.



Chapter 6

Experimental Evaluation
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6.1 Minimum Sampling Density Estimator

This section provides an outline of the experiments that were carried out in
order to evaluate the formula for the minimum sampling density as it was
deduced in Section 5.3.2. A simulated random sampling is therefore carried
out on synthetic fields. By varying the number of samples around the deduced
optimum, its validity is inspected by comparing the RMSE of each interpolated
model.

6.1.1 Experimental Setup

To check the validity of the approximation of the necessary minimum sampling
density, the method of kriging is applied to sets of observations, varying in
number, performed on different synthetic continuous fields. Within one set,
the observations are randomly and uniformly dispersed over the n-dimensional
region of interest.

The differences (RMSE) between the reference field and the one derived
from the interpolation are compared. The experiment will be carried out on
different kinds of random fields, which will be specified before the respective
results are presented.

6.1.2 Results

As first reference, a two-dimensional field is generated by

f(x, y) = sin(x) · sin(y). (6.1)

The resulting raster grid of 150x150 pixels in greyscale levels is depicted in
Figure 6.1.
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Figure 6.1: Two-dimensional sine signal as raster grid

With Equations 5.3, 5.8 and the extent of 1λ in each spatial dimension we
get

2
1
1
4

· 21
1
4

= 64 (6.2)

as approximate minimum number of samples necessary to capture the pat-
tern for Kriging. We apply seven sampling sets from 25 up to 115 observations,
increase by 15 observations with each step, normalize it to the calculated value
of 64 and plot this quotient against the RMSE between reference model and
derived model. For convenience, this value is normalized to the highest one
in the series. The parameter range is also added to the diagrams discussed in
the following. It is derived from the variogram fitting procedure (see Section
5.3.5) and is normalized to the theoretical value determined by Equation 5.3.
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Figure 6.2: Sampling variations applied to a two-dimensional sine signal with
the ratio of sampling normed to the derived value on the abscissa, and the
ratios of RMSE and range normed to the initial value (RMSE) and to the
value of the generated field (range_s)

As can be seen from the RMSE graph of Figure 6.2, a noticeable degree of
saturation is achieved when the quotient approaches the value of one, which
represents the minimum number of samples of 64 as computed by Equation
5.8.

Extending the sine signal by a third dimension reveals a similar pattern, as
can be seen in Figure 6.3. In this case, the number of samples each epoch is
normalized to is

2
1
1
4

· 21
1
4

· 21
1
4

= 512. (6.3)
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Figure 6.3: Sampling variations applied to a three-dimensional sine signal
with the ratio of sampling normed to the derived value on the abscissa, and
the ratios of RMSE and range normed to the initial value (RMSE) and to the
values of the generator (range_s, range_t)

Having used the separable variogram model for interpolation, the parameter
range is separately estimated for the temporal dimension. Other models might
also be applied here (see Equations 4.8, 4.9, 4.10, p. 56), but this is out of the
scope of this evaluation. For the spatial dimension we assume this parameter to
be equal for each direction; otherwise anisotropy would have to be introduced
[Webster and Oliver, 2007].

The sampling on sine signals primary was carried out for the reason of
transfer of concept of the Nyquist-Shannon theorem from signal processing
to geostatistics (see Section 3.3.2). After the validity for periodic signals was
shown, it was applied to continuous random fields as depicted in Figure 6.4.
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Figure 6.4: Two-dimensional synthetic random field generated by a Gaussian
covariance function

Given an extent of 150 and a range of 30, generated by a Gaussian covariance
function (see Section 5.3.1), the number of necessary observations is calculated
by

2
150

30
· 2150

30
= 100. (6.4)

In the diagram (Figure 6.5), the effect of a saturated error quotient can
be found near the abscissa value of 1.0 that corresponds with the estimated
minimum sample size.

Figure 6.5: Sampling variations applied to a two-dimensional random field
with the ratio of sampling normed to the derived value on the abscissa, and
the ratios of RMSE and range normed to the initial value (RMSE) and to the
value of the generator (range_s)
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In this case, the similarity between the RMSE curve and the range s ratio
curve is striking, indicating that the accuracy of the estimation of the param-
eter range corresponds with the accuracy of the whole derived model.

This effect is less obvious in Figure 6.6, which represents sampling epochs
performed on a three-dimensional random field. There is also a generally
higher ratio between estimated and actual range parameter here indicating an
increased uncertainty of estimation due to the higher complexity of the phe-
nomenon. The saturation effect of the RMSE when the sample size approaches
the number estimated by Equation 5.8 can nevertheless also be identified quite
clearly.

Figure 6.6: Sampling variations applied to a three-dimensional random field
with the ratio of sampling normed to the derived value on the abscissa, and
the ratios of RMSE and range normed to the initial value (RMSE) and to the
values of the generator (range_s, range_t)

6.1.3 Conclusions

The experiments have corroborated the overall validity of the formula for mini-
mum sampling density. It can thus be used to estimate the observational effort
for any setting where the central geostatistical parameter range is known for
all involved dimensions. It assumes a uniform random distribution of sample
positions and can therefore only provide an approximate estimation. For the
simulated monitoring scenarios it is of great value since it relieves the process
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of sampling of arbitrariness and makes experiments on models of differing dy-
namics (and therefore differing values of range) comparable. We will make use
of this formula in the subsequent experiments to reduce effects resulting from
insufficient sampling or oversampling.

6.2 Variogram Fitting

Geostatistical interpolation is carried out by applying a particular covariance
function with its associated parameters to generate a covariance vector for
each position to be estimated. This vector expresses the correlation to each
single observation by using its (n-dimensional) distance to the interpolation
point as input variable for the covariance function. Based on this structure,
a linear regression is performed to find optimal weights for each observation
[Armstrong, 1998, Webster and Oliver, 2007, Oliver and Webster, 2015].

In order to adapt to a particular set of observations, the parameters of the
variogram model are adjusted to fit the corresponding experimental variogram
(variogram fitting, Section 5.3.5). The appropriateness of the variogram model
and its associated parameters determines the quality of the interpolation and
is therefore decisive for the whole process.

In an experimental setting with synthetic continuous random fields as given
here, the quality of interpolation and therefore the quality of variogram fitting
can be expressed as RMSE between the reference model and the one derived
from interpolated observations. This is the setting that is applied in this
section to identify suitable configurations for variogram fitting.

6.2.1 Experimental Setup

In order to experimentally identify favourable variants of variogram fitting,
the methodological alternatives of experimental variogram aggregation (see
Section 5.3.4) and fitting of the function parameters (see Section 5.3.5) are
systematically tested.

The methodological parameters that are considered for systematic variation
and testing are listed in Table 6.1.
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Process Abbr. Parameters/Variants
Split Dimension Selection split_dim toggle, max_rel_dev, max_rel_ext
Split Position Selection split_pos mea, med, mid
Aggregation Position Selection aggr_pos mea, med, mid
Gauss-Newton Weighting Function wgt_fnc equ, lin, sin, log

Table 6.1: Methodological options for critical steps within the variogram fitting
procedure

To apply and compare these variants in a simulation, a continuous random
field is used. It was generated by applying a moving average filter on a field
of pure white noise, as described in 5.3.1. The following properties have been
applied to the generating process:

• grid size of 150 x 150 (spatial dimensions) x 30 (temporal dimension)
elements (=675,000 grid cells)

• spatio-temporal extent in 150 m x 150 m x 60 min
• white noise field with mean of 5000 and deviation of 500
• filter: separable covariance function based on gaussian function for

spatial and temporal dimension, spatial range of 50 grid cells (, 50
m), temporal range of 15 grid cells (, 30 min)

By transforming to greyscale levels, we get a visual impression of the model
in Figure 6.7.

Figure 6.7: Experimental continuous random field as image sequence; images
No 1, 4, 7, 10, 13, 16 out of the 30 image time series

According to Equation 5.8, we calculate

2
150

50
· 2150

50
· 260

30
= 144 (6.5)

as the approximate number of observations necessary to capture the phe-
nomenon adequately. The samples are dispersed randomly and uniformly over
the set of 675,000 grid cells. For the experiments to follow, we keep the model



144

and the random sampling positions constant to achieve identical conditions for
all methodological variants.

By generating the experimental variogram, with equation 5.10 we get 23,220
pairings of observations which can be investigated in terms of a correlation
pattern between spatio-temporal distance and squared halved difference of
values (semivariance γ, see Equation 4.2).

 0  20  40  60  80 100 120 140 160 180 200  0
 10

 20
 30

 40
 50

 60

 0
 10
 20
 30
 40
 50
 60

γ

Hyperplanes
Exp. Variogram Points

Aggregated Points

ds
dt

γ

Figure 6.8: Variogram point cloud aggregation with semivariance γ for spatial
(ds) and temporal (dt) distances; the hyperplanes are mainly concealed here
and can better be seen in Figure 6.9

Figure 6.8 shows the semivariance γ of each pair on the vertical axis plotted
against the spatial and temporal distance on the two horizontal axes, respec-
tively. The aggregated green points are used to fit the theoretical variogram,
as can be seen in Figure 6.9. The intersection lines of the partitioning BSP
planes with the plane through γ = 0 are also plotted to illustrate the prior
aggregation areas.
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Figure 6.9: Separable variogram model fitted to aggregated points from ex-
perimental variogram point cloud with semivariance γ for spatial (ds) and
temporal (dt) distances

Due to the scale of the vertical axis in Figure 6.9, the ”outliers” in the
regions of high spatio-temporal distance become visible. In variants where the
weighting functions specified in Section 5.3.5 are applied, these points do not
have much influence on the fitting.

To track down the particularly appropriate configurations from the method-
ological variants generally reasonable (see Table 6.1), all possible combinations
of variants have to be iterated over. Since the order of process steps is invari-
ant, the number of combinations is simply the product of variants per process
step by

3 · 3 · 3 · 4 = 108. (6.6)

For each of these distinct parameter configurations, the RMSE is received by
comparing the continuous random field with the interpolation result received
by this particular configurational variant.

Since the estimation of the range values (spatial and temporal) is the crucial
step within the whole process chain, these values are included in the evaluation
scheme. More precisely, the sum of relative deviations of the estimated ranges
(rs, rt) from the ones used for the random reference field (rsr, rtr) are used as
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metric for the quality of the overall variogram estimation by

dr =

√
rs2 + rt2√
r2
sr + r2

tr

, (6.7)

where small values for dr indicate estimations of ranges near the ones used
for random field generation by variogram filters (see Section 5.3.1).

To systematically compare all of the 108 parametric variants, the entire
monitoring process chain is performed for each one of them.

6.2.2 Results

The results of the experiments are presented as diagram in Figure 6.10. For
the best 15 variants, a more detailed view is given in Table 6.2. It is sorted by
ascending RMSE. The first four columns represent the parametric options with
its selected values per row, whereas the remaining columns contain the numeric
indicators considered significant for evaluation. The estimated range values
for the spatial and temporal component of the variogram are listed as rng_s
rng_s and rng_t, respectively. Derived from these, the combined quality
estimation quotient calculated with Equation 6.7 is given by rng_qnt. With
rmse_gn, also the residuals derived from the Gauss-Newton fitting procedure
are considered.

For evaluation of all 108 parameter variants, the RMSE between reference
model and interpolated model are plotted against two of the indicators de-
scribed above as input variables rmse_gn and rng_qnt in Figure 6.10.

As can be seen from both plots, there is no obvious correlation between
the RMSE from Gauss-Newton variogram fitting (rmse_gn) and the RMSE
between reference model and interpolated model (rmse). In contrast to that,
the quality of estimation of the (joint) range rng_qnt strongly correlates with
the overall interpolation quality.

In both diagrams we find two clusters where variants have the same RMSE
(2.0 and 3.4), which can only be seen in the left diagram where the abscissa
values differ. The reason for that is that the corresponding methods for ag-
gregation and fitting yield the same upper threshold for parameter estimation,
which results in the same RMSE values. Since this upper parameter threshold
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Tabelle2

Seite 1

nr split_dim split_pos aggr_pos wgt_fnc rng_s rng_t rng_qnt rmse rmse_gn

1 max_rel_dev mea med sin 70,61 43,91 1,43 0,35 1,40

2 max_rel_dev mid mid sin 73,10 44,16 1,46 0,35 1,70

3 max_rel_ext mea med sin 68,39 41,41 1,37 0,36 1,58

4 toggle mea med sin 67,62 42,09 1,37 0,36 1,32

5 max_rel_ext mid mid sin 67,24 42,12 1,36 0,36 1,39

6 max_rel_ext mid mea sin 78,42 45,29 1,55 0,37 1,40

7 toggle mid mea sin 80,12 46,25 1,59 0,38 1,43

8 max_rel_ext mid med sin 83,96 46,18 1,64 0,41 1,41

9 max_rel_dev mid mea sin 85,94 48,31 1,69 0,43 1,72

10 toggle mid med sin 86,25 48,17 1,69 0,43 1,45

11 max_rel_dev mid med sin 89,52 49,29 1,75 0,47 1,73

12 max_rel_ext med mid log 96,58 48,02 1,85 0,56 1,22

13 max_rel_ext med mea log 101,25 48,48 1,93 0,63 1,23

14 toggle med mid log 101,72 48,25 1,93 0,64 1,18

15 max_rel_ext med med log 102,46 48,72 1,95 0,66 1,24

Table 6.2: Result table with systematic evaluation of 15 best out of 108 vari-
ogram aggregation variants sorted ascending by main quality indicator RMSE

is inadequate and produces weak results, this effect was not investigated any
further.

The most significant property in this experimental series is the weighting
function (wgtfnc). The sine variant appears superior to all other functions,
followed by the logarithm-based variant. The first variant that does not use
different weights at all (equ for equal weights) appears at position 45 out of
108 and thus appears not to be beneficial in any constellation.

For the splitting position (split_pos) of the space partitioning algorithm
the mean and middle positions perform best, while for the position to be
aggregated (aggr_pos), the median and the middle appear beneficial, although
not that significant, since the mean variant already appears at sixth position.

The least distinctive feature in this constellation is the method by which
the next splitting dimension (split_dim) is determined, since all possible three
variants are among the best four configurations. So the binary space parti-
tioning algorithm appears to group the points into subsets in a way that is not
significantly affected by this step according to the properties that are relevant
for variogram generation.

Although the experiment does not in general indicate unambiguous advan-
tages for particular variants of aggregation (except for the weighting function),
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Figure 6.10: Evaluation diagrams of 108 parameter option variants; the RMSE
between reference model and interpolation model (ordinate axis) is plotted
against the RMSE from variogram fitting by Gauss-Newton (RMSE_GN, left)
and the quotient between the compound range derived from variogram fitting
and the one from model generation (RNG_QNT, right)

it certainly reveals some preferences that should be considered in forthcoming
experiments.

For the most distinctive option weighting function there might be potential
for further optimization by defining and testing variants similar to the sine or
logarithm-based function. This strategy can also be applied to other—actual
or future—options, thus evolving towards better and better solutions.

6.2.3 Conclusions

The monitoring of continuous phenomena is of high complexity, also because
of the interdependencies of the variety of methods and parameters that can
be applied [Meyers, 1997, p. 42 ff.]. The contribution of the variation module
is to facilitate systematic tests and evaluations based on different indicators.
The experiment introduced in this section was focused on the crucial task of
geostatistics: the variogram estimation.

Although already numerous methodological variations have been evaluated,
there is plenty left for further survey resulting from the possible variants of
monitoring. If not only methodological options but also parametric values
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shall be varied (e.g. variable x from 3.0 to 8.0 in steps of 1.0), this can easily
be included into the variation component.

With the proposed tool, more advanced analysis of the resulting evaluation
tables like data mining or steepest ascent [Box and Draper, 2007, p. 188] are
possible and might reveal more complex dependencies than the ones identified
here.

It has to be stated that the experiment relies on one single synthetic model
with a single set of observations. This is, however, a common situation in
practice as [Matheron, 1988, p. 40]. However, the results presented here
might very well be different for another synthetic model and also for another
distribution of samples, so one should be reasonably reluctant from drawing
general conclusions from them.

On the other hand, limited generality is the very nature of experimental
studies and this does not mean that it is not possible to draw any conclusions at
all from them. Rather, they might be considered valid until they are overridden
by new experiments that provide deeper insight and more general laws [Popper,
2002], [Gigch, 1991, p. 62].

The general architecture of the simulation framework introduced here is
supposed to make this process more efficient.

6.3 Sequential Merging

Sequential merging has been introduced in Section 5.4.2 as a technique to ex-
ploit the kriging variance in order to conflate several models by weighting their
values by their inverse variance [ín Martínez and Sánchez-Meca, 2010]. The
original motivation for this concept was to mitigate the computational bur-
den of large sets of observations. In (near) real-time monitoring environments
where the state model needs to be updated continuously by new observations,
the problem of seamless merging can be solved by the same approach.

As a proof of concept, the sequential data merging method is tested exper-
imentally and evaluated according to its performance gain in this section.
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6.3.1 Experimental Setup

In order to prove the feasibility of the approach, but also to reveal its impact
on accuracy, a simulation with appropriate indicators is performed. For this
purpose, a synthetic continuous field is used. It is derived by kriging over 14
rain gauge stations and depicted in Figure 6.11 (a).

At this stage, we ignore temporal dynamism in order to keep it out as a
factor for differences (RMSE) between the reference model and the sequential
approach. In the simulation scenario, the continuous grid model serves as ref-
erence. Random observations are scattered over the model area, each assigned
the value picked from the reference model at its position. Given this simulated
measurement set, a new model can be calculated by kriging (Figure 6.11 (b)).
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(a)

(c)

(b)

(d)

(f)(e)

...

Figure 6.11: Evaluation of sequential method: reference model (a); random
points and corresponding model derived from those points (b); first subset of
random points (c) with corresponding difference map (d) against the reference
(a); sequentially updated model of all subsets (e) with resulting difference map
(f) against the reference (a).

The derived model (Figure 6.11 (b)) slightly differs from the reference model
(Figure 6.11 (a)) due to interpolation uncertainty, but approximates it well
when the number and distribution of samples are sufficient (see Section 5.3.2).

Following the sequential strategy, subsets of all synthetic measurements are
created and calculated sequentially in sub-models (see Figure 5.15 and 5.16).

For the first subset (Figure 6.12 (c)), the deviations to the reference model
(a) are rather large and can be seen in the difference map (d). Calculating all
subsets of the data and merging them successively by weight leads to the final
model (e), which also considered all the sample data, but unlike model (b) in
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a sequential manner.
The difference map (f) expresses the discrepancy towards the reference

caused by the sequential approach. The overall discrepancy per model can
be quantified by the root-mean-square error (RMSE) relative to the reference
model (a). In the following, this value is used to indicate the fidelity of these
interim models.

6.3.2 Results

In Figure 6.12, the computing time is plotted against the RMSE relative to
the reference model for both the complete model calculation (square) and the
sequential method (connected dots). Randomized sets of points (100, 200, 300
and 400) were subdivided into subsets or sub-models of 10 points each.
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(c) (d)
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Figure 6.12: Performance comparison between master model (square) and se-
quenced calculation (dots): (a) 100 samples, (b) 200 samples, (c) 300 samples
(d) 400 samples; subdivision is done in a way that sub-models contain 10
samples each.
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As can be seen from the results, the sequential method has a lower accuracy
in total, but provides a coarse result almost immediately. Within each plotted
scenario, the RMSE tends to decrease when following the sequence. TheO(n3)-
effect of the conventional calculation becomes obvious when comparing its total
computing time to the one of the sequential approach for large n.

Since the observations are distributed randomly over the reference model,
the results also tend to scatter when the scenario calculation is repeated. But
the general behaviour of the algorithm is reproducible in essence.

The tests introduced here are designed to explore the general behaviour of
the approach. It converges to a saturation value and for large models clearly
outperforms the conventional method in computing time.

6.3.3 Conclusions

This experiment was designed to demonstrate the general feasibility of a se-
quential strategy when performing kriging interpolation. It exploits the kriging
variance as a continuous weighting schema of the models to be merged. The
approach addresses the computational complexity of kriging for large datasets
and the problem of integrating new observations into an existing model, as
present in real-time monitoring scenarios.

The results show that the approach reduces total computing time for large
datasets and provides coarse models immediately. It defines a rule for seamless
merging of partial models based on the information confidence given by the
variance map. For real-time monitoring systems that are fed by a continuous
data stream, the method provides fast responsiveness and can adapt to data
load and available resources.

For real monitoring scenarios, the method will have to be refined to generate
acceptable results under given circumstances like data stream characteristics,
model update intervals, computational resources and quality requirements.
With the framework proposed, such circumstances can be considered in sim-
ulation scenarios. Different method variants and parameters can be applied
and evaluated by using appropriate output indicators. Feasible approaches and
settings can thus be identified before using them for real monitoring scenarios.
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6.4 Compression

In this section, the compression algorithm as described in Section 5.4.3 is
applied to empirical data. After an introduction of the specific data format of
drifting buoy data, an evaluation of the achieved compression rate is carried
out.

6.4.1 Experimental Setup

For the evaluation of the compression algorithm, data from the Argo drifting
buoys program were used1. The format was provided by a Canadian govern-
mental service2. It is used for the experiments and is described in Listing
6.1.

Contents:
Col 1 = Platform identifier (ARGOS #)
Col 2 = EXP$ - The originator’s experiment number
Col 3 = WMO$ - WMO platform identifier number
Col 4 = Position year/month/day hour:minute (UTC)
Col 5 = Latitude of observation (+ve North)
Col 6 = Longitude of observation

(+/- 180 deg +ve West of Greenwich)
Col 7 = Observation year/month/day hour:minute (UTC)
Col 8 = SSTP - Sea surface temperature (deg. C)
Col 9 = Drogue on/off - 1 = attached; 0 = not

Note: Missing value indicated by 999.9999

Listing 6.1: Original header of ARGO drifting buoy data

The sample contains all data types mentioned in Section 5.4.3. We find type
Integer for the IDs in columns 1, 2 and 3. Colums 4 and 7 contain DateT ime
types, colums 5, 6 and 8 represent Double numbers while column 9 displays
an on/off state as Binary.

From the original dataset, subsets of 100, 1000 and 10000 points are selected
by spatial and temporal bounds. Listing 6.2 depicts a corresponding data
header generated by the compression algorithm (note the changed names and
order compared to Listing 6.1). The values for min and max are derived from
the actual data. Together with the preset value max_dev for the maximum

1http://www.argo.ucsd.edu, visited 2018-02-19
2http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/drib-bder/

svp-vcs/index-eng.asp, visited 2016-04-27

http://www.argo.ucsd.edu
http://www.meds-sdmm.dfo-mpo.gc.ca/isdm- gdsi/drib-bder/svp-vcs/index-eng.asp
http://www.meds-sdmm.dfo-mpo.gc.ca/isdm- gdsi/drib-bder/svp-vcs/index-eng.asp
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deviation, the bit depth is determined using Equation 5.21. The value bpr
indicates the number of bits per row used for each column.

A maximum deviation of 0.5 for integer numbers means that at full bit depth
the exact number is provided. For the DateT ime-type this value represents
seconds, so the minutes are decoded accurately when it is set to 30.

fname max_dev bits bpr min max
x 0,0005 16 1 10,767 49,671
y 0,0005 15 1 40,07 59,08
val 0,0005 14 1 5,529 18,55
idarg 0,5 16 1 37411 92885
idexp 0,5 12 1 6129 9435
idwmo 0,5 23 1 1300518 6200926
tpos 30 10 1 2010-12-31 21:54 2011-01-01 09:24
tobs 30 10 1 2011-01-01 00:05 2011-01-01 09:57
drg 0 1 1 False True

Listing 6.2: Header for the compressed dataset of ARGOS drifting buoy
observations

As can be seen from Listing 6.2, the value for idwmo has the highest bit
depth of 23, since the range of that value is nearly five million. The effect is
that the longest chain of bits occurs for that dimension in the corresponding
data file (see Listing 6.3).
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iii iii iii
dddtt dddtt dddtt

vaewpod vaewpod vaewpod
arxmobr arxmobr arxmobr

xylgpossg xylgpossg xylgpossg
--------- --------- ---------
101011001 010101000 111101000
10100000 01110000 00010000
01001100 00100100 00000100
11000010 00010010 00010010
01001000 01001000 00101000
01100000 01111000 01011001
01101000 01001001 00101000
10000100 01101100 11101101
01000110 11000111 10000111
11100100 00010100 11110100
001001 101011 111011
000001 010111 011111
0100 0 0101 0 1010 0
1010 1 0111 1 0001 1
01 1 1 10 0 1 10 1 1
1 0 0 1 0 1 0 1 0

1 0 1
1 0 0
1 1 0
1 0 0
1 0 0
1 0 0
0 1 1

Listing 6.3: Compressed data for three observations of ARGO drifting buoys
(column names and values to be read vertically)

Three observations are listed, each containing all nine data columns orga-
nized vertically (as are the column names) with increasing accuracy from top
to bottom. As can be seen, the binary value of the rightmost field drg (indi-
cating drogue on/off) is already complete in the first row whereas the one for
idwmo is resolved in row 23, as indicated in the header file (Listing 6.2).

Since this column represents an ID, it might very likely be necessary to
resolve it earlier than in the last data row. Therefore, the number of bits per
row is increased to four. The resulting structure for the same data can be seen
in Listing 6.4.
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iii iii iii
ddd tt ddd tt ddd tt
vaew pod vaew pod vaew pod
arxm obr arxm obr arxm obr

xylgpo ssg xylgpo ssg xylgpo ssg
------------ ------------ ------------
100011010001 010101010000 101011010000
10000000100 01000000100 11100000100
01001111100 00010111100 00101111100
01000011000 00010011100 00100011000
11001111100 01011001000 01101010110
11000110 00 01011001 00 11100100 00
11101 10 01011 10 11101 10
10000 10 11111 10 01100 00
11110 00 11010 00 10100 11
11000 10 10100 11 01100 11
00010 10 10011 11 01100 11
10110 00 01101 01 00100 01
1111 1110 0010
0010 1101 1110
0110 0001 1110
1 10 1 11 1 10

0 0 1
1 1 1
1 1 1
0 1 1

Listing 6.4: Compressed data with prolonged bit length of four per row
for column idwmo (column names and values to be read vertically; data
columns without name belong to idwmo)

In this configuration, the exact values for idwmo are already resolved in the
sixth row since the three columns to the right without title are also utilized.
In practice, the bit length per row can either be set directly (column bpr in
the header), determined by maximum number of rows, or by some arbitrary
combination of accuracy and row number in the form “accuracy x must be met
in row n”. This configuration can be set individually for each dimension to
achieve a good balance between stepwise accuracy improvement and total size
per data row.

6.4.2 Results

To create indicators for the performance of the compression method, it is
applied to a dataset of 100, 1,000 and 10,000 observations given in the format
described above. We compare four indicators here: The first indicator is the
size of the text file as received from the Canadian governmental service provider
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(denoted by “Text” in the following).
The necessary space when the data is parsed and translated into native

machine data types is evaluated as second indicator (“Native”). We assume
32 bits for Integer, 64 bits for Double, 64 bits for DateT ime and 8 bits for
Boolean. The proposed binary format of the BSP compression algorithm is
the third format listed. The size of the header is not considered here. Finally,
a ZIP compression of the text file is applied as forth format with 7-Zip using
following settings: normal compression level, deflate method, 32 KB dictionary
size and a word size of 32.
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Figure 6.13: Data volumes (KB) in different formats for 3 datasets

As can be seen in Figure 6.13, the approach outperforms the ZIP compres-
sion for the small sample. With growing data size, the efficiency of the ZIP
dictionary is increasing, which is not the case for our approach. Neverthe-
less, taking into account progressive decoding as an important key feature, the
slightly worse compression ratio for large datasets appears acceptable.

Remarks on Reasonable Extensions The proposed compression method
as introduced so far fulfils the requirements mentioned at the beginning of this



159

section. There are, however, some ideas not yet implemented but certainly
worth considering to be realized in future.

In the sample buoy data introduced in Section 6.4 we find missing mea-
surement values indicated by “999.9999” (see header in Listing 6.1). The idea
behind this number is to have an optical pattern immediately recognizable for
the human eye as exception. Using it as “unset”-indicator within the com-
pression algorithm is rather awkward, since, by being an absolute outlier, it
enlarges the value domain (and therefore the necessary bit depth) significantly.
A more explicit variant is desirable here, e.g. by indicating validity/invalidity
of a value by its first bit. In case of invalidity, the bits to follow for that partic-
ular dimension can simply be dropped, but on the other hand, this mechanism
would only pay off when having a significant amount of unset values.

Another aspect worth considering is the compression of the header associ-
ated with each compressed data segment (see Listing 6.2). With its metadata
for each value dimension (name, deviation, bit depth, bits per row, min, max)
it is crucial for archiving and retrieval and a prerequisite for correct decoding.
In a monitoring scenario with very small data segments to be compressed, the
relative size of that header can justify its compression where transmission of
data is expensive.

Wherever the transmission of the compressed data is potentially error prone
and not secured by other protocols, it might become necessary to implement
some checksum method within the binary format itself. In this case, the gain
in reliability needs to be carefully weighted against the expenses according to
implementation, processing and data volume.

6.4.3 Conclusions

The methodology presented here is useful for situations where massive sensor
data need to be compressed in a way that allows a progressive retrieval with
increasing accuracy per step. It supports the most typical data types found
in sensor data like Float/Double, Integer, Boolean, and DateT ime, each one
with specific compression schemata. The compression ratio depends on the
value range and necessary accuracy. The number of bits per transmission
step can be set in accordance with the transmission priorities, e.g. if certain
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dimensions are needed with higher convergence of accuracy per step.
In a wireless network scenario, the method would require some overhead for

communication between data nodes. For example, the header that determines
the mode of transmission needs to be exchanged before transferring the data.
In environments where transmission of data is significantly more expensive
than processing coding and decoding tasks, the method is likely to pay off.

For using the proposed method in a real-time environment, some protocol
needs to be created to retain efficiency of transmission: values of defect sensors
can be omitted, changed value ranges need to be adjusted and maybe the
bits-per-row configuration shall be changed due to changed priorities. All
this means considerable overhead which should carefully be weighed against
achievable savings for data transmission.

When thinking about long-term archiving of data streams in databases,
there are several points to be considered. Maybe the most important one
is how a large dataset is to be segmented into smaller units. Doing this by
spatial, temporal or spatio-temporal boundaries is reasonable since this is the
most obvious means to refer the sensor data to other aspects like e.g. traffic
density. Databases today widely support efficient management of spatial and
spatio-temporal data [Brinkhoff, 2013].

But the associated indexing techniques were primarily developed having re-
trieval performance and not compression in mind. Thus, it appears reasonable
to make use of them at a higher granularity level than the individual obser-
vation. So the method proposed here can be applied to appropriate segments
of data while using the spatial or spatio-temporal boundaries of that segments
for indexing with common database techniques. The compressed segment can
be stored as binary large objects (BLOBs) in the database with associated
spatial/spatio-temporal index and metadata.

Since the spatio-temporal boundaries can also be seen as statistical prop-
erties of the dataset, it is reasonable to ask if additional statistical properties
like mean value, standard deviation or skewness should not also be considered
for each dataset. This might be of little use for the dimensions space and time,
but can be crucial for measured values like temperature or air pollutants. If
advanced analysis methods like geostatistics are used, more complex statistical
indicators like variogram model parameters should be considered [Lorkowski
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and Brinkhoff, 2015a]. All those data should be stored as metadata alongside
with each dataset to support efficient retrieval.

One central issue here is the way large datasets are subdivided into smaller
subsets on which the compression method is applied to and the corresponding
metadata are related to. A good configuration balances retrieval granularity,
subset management overhead, indexing costs, transmission data volume, sys-
tem responsiveness and accuracy in a way that fulfils the requirements of the
whole monitoring system.

6.5 Prediction of Computational Effort

The general idea behind the experiment set out in this section is to compare the
computational effort predicted by the model approach of machine-independent
description from Section 5.5.2 with the one actually measured in experiments.
Different hardware with different configurations according to multithreading
are applied to test the generality of the concept.

6.5.1 Experimental Setup

To evaluate the concept from Section 5.5.2, it was applied to the resource in-
tensive process for generating continuous random fields. The computational
workload of this algorithm, obtained with help of the function QueryProcess-
CycleTime and expressed by the metric gigacycles, increases when increasing
the range value of the associated variogram, since more grid cells have to be
considered to calculate the weighted mean.

The experiments were carried out for different modes on two different CPUs:
an Intel® Core™ i3-5010U CPU with 2.1 GHz and 4 logical processors (2 cores)
and an Intel® Xeon™ E5-2690 v3 with 2.6 GHz and 24 logical processors (12
cores).

In the study, the multithreading overhead factor thro from Equation 5.22
was quantified to 0.5 for both processors, which means that, in this case,
the gain in performance in effect coincides with the number of physical (not
logical) processors of the used CPU. This indicates that the multithreading
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functionality within one core can rarely be exploited for this task. For the
Xeon™ CPU, the frequency correction factor fc is set to 1.5 to express its
apparently better instructions-cycle ratio.

By switching the parallelization mode on and off for the critical loop in the
algorithm, we get four configurations to evaluate according to the proposed
model for estimation of computational effort. The cycles counted by the Intel™

Core™ i3-5010U CPU in the singlethreaded mode are used as reference for
Equation 5.22.

In the given process, there is one portion of code that can only be processed
singlethreaded because it contains routines difficult to parallelize. The other
portion contains the critical loop executing the moving average filter by numer-
ous iterations. Because of its high workload impact, this loop has deliberately
been optimised with respect to parallelization.

6.5.2 Results

Based on the proposed metric, Figure 6.14 refers the time expense predicted
by the equation (lines) to the time actually needed for calculation (points).
The calculated time effort represented by the lines is composed of the sum of
algorithmic portions for each workload position on the abscissa.
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Figure 6.14: Performance evaluation of four computer system configurations:
(1) 2.1 GHz with 1 thread, (2) 2.1 GHz with 4 threads, (3) 2.6 GHz with
1 thread and (4) 2.6 GHz with 24 threads. The lines (prefix fnc) represent
the prediction by function for each configuration and the points (prefix exp)
represent the experimental data.

The plot clearly reveals the scaling effects of multithreaded processing,
which, as already stated in Section 5.5.2, is the crucial leverage for contem-
porary performance improvement. It can also be seen that predicted and
actual time expenses have similar values. Only the variant with 2.1 GHz and
4 threads does not scale as well as predicted. One or some of the blurring
influences mentioned in Section 5.5.2 can be assumed to cause this effect.

6.5.3 Conclusions

The experiment was focused on the generic quantification of computational
workload in order to estimate the temporal effort that is necessary on different
platforms. The evaluated toolset is capable of estimating the processing time
of complex calculations for different configurations of scenarios of monitoring,
analysis and simulation.

In combination with the toolset for systematic variation and evaluation (see
Section 5.5), this approach allows for deep analysis of multiple constellations
according to methods, parameters and hardware configurations and their ef-
fects on performance indicators. Feasibility and efficiency studies for different
configurations can thus be carried out without actually using the intended
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hardware. A calibration of the parameters of Equations 5.22 and 5.23 might
be necessary if they can not sufficiently be obtained from hardware specifica-
tions.

The central concern of the concept is to abstract from concrete hardware
configurations, algorithm parameterizations and output indicators and thus to
simplify and standardize comprehensive evaluation scenarios. Strategies for
incremental optimization are thus made explicit and transparent. This can
significantly help to make experimental results well documented and repro-
ducible.

The modelling and consideration of data transmission costs, which is cru-
cial for wireless networks, was only briefly mentioned as one possible factor of
optimization. An inspiring scenario in this context would be a complex simula-
tion with distributed sensors and full knowledge about geometric constellation
and profiles for data transmission expense that depend on that constellation.
Placing the sensors on autonomous platforms increases complexity and imposes
extensive simulation to find strategies for a high overall efficiency. The tools
presented here could be of significant importance to master the complexity of
such missions.

6.6 Case Study: Satellite Temperature Data

The experiments introduced so far were carried out on synthetic models gen-
erated by a filter (see Section 5.3.1) or on models derived from interpolated
observations (as in Section 5.4.2). The idea behind this approach is to have
full knowledge about the observed phenomenon.

Beside this, working with synthetically generated models has the advantage
that the variogram parameters estimated from the observations (see Section
5.3.5) can be compared to the ones known a priori. Interdependencies between
the quality of parameter estimation and overall interpolation quality can thus
be identified (see Section 6.2). Furthermore, the formula for the minimum
sampling density (Equation 5.8) can thus be tested for different constellations
of dynamism.
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To also apply the framework to empirical data, a remote sensing thermal
image, obtained from the National Oceanic and Atmospheric Administration
(NOAA), is used as reference in this section. In practice, such imagery data
usually does not have to be interpolated since it already contains the variable
of interest in the required resolution (except for occlusions, e.g. by clouds
[Sun et al., 2006, Cressie and Wikle, 2011]). So the advantage of knowing
the complete model in the given resolution is also given here. What is not
given here—in contrast to the synthetically produced model—is any a priori
information about the dynamism of the observed phenomenon.

6.6.1 Experimental Setup

Just as with the synthetic data, in this experiment the given raster image is also
sampled with random observations that are used to estimate the unobserved
grid cells. Analogously, the accuracy of the interpolation can then be quantified
by the difference between the reference and the derived model.

As reference model, a satellite raster image of the 4km Pathfinder SST
Climatology provided by the National Centers for Environmental Information
(NCEI)3 from the National Oceanic and Atmospheric Administration (NOAA),
was selected. It provides the sea surface temperature with a ground resolution
of about 4.6 kilometers (for both latitude and longitude, since a region in the
Atlantic Ocean near the equator at 4◦S, 12◦W was chosen). The image entails
150 rows and 150 columns, resulting in 22,500 grid cells. An area of about
697 * 697 km is covered. The image was taken at night on 2013-01-01. The
temperature is stored as 32 bit floating point value of unit kelvin.

Figure 6.15 displays the grid using grey scaled values.
3https://www.ncdc.noaa.gov/cdr/oceanic/sea-surface-temperature-pathfinder,

visited 2018-02-19

https://www.ncdc.noaa.gov/cdr/oceanic/sea-surface-temperature-pathfinder
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Figure 6.15: Sea surface temperature (SST) satellite image extracted from
the 4km Pathfinder SST Climatology provided by the National Centers for
Environmental Information (NCEI). The values range from 284.0 (bright) to
298.9 (dark) K (10.8 to 25.7 ◦C, respectively)

Assuming a sufficient signal-to-noise ratio, the grid represents the sea sur-
face temperature (SST) at the given resolution. Although a predominantly
continuous character can be granted, there are also discontinuous patterns,
especially in the upper half of the image. While the overall standard deviation
of the temperature grid is 3.3 K, we find differences of more than 10 K for
neighbouring cells at the edges of these patterns.

These effects are caused by ocean circulation and oceanic fronts [Vihma
et al., 2014, Sabins, 1996]. This issue is extensively covered by explicitly de-
termining such fronts in an interpolation model in [Sun et al., 2006]. The
method is proposed for applications where discontinuities are rather common,
like for oceanography or soil moisture monitoring. Gaps in observational cov-
erage, e.g. caused by clouds, are thus bridged by patterns that entail such
fronts.

The subject of discontinuities is beyond the scope of this work. Instead, the
set of methodological and parametrical variations given by the framework are
applied to the image in order to identify the best configuration from the given
set of variants for this particular kind of phenomenon.

The satellite image indicates the superiority of the remote sensing method.
In this example, it provides a gapless and consistent representation of the phe-
nomenon. Nevertheless, remote sensing is not always available due to clouding,
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coverage, cost, etc. [Sabins, 1996]. Moreover, not every phenomenon can be
acquired sufficiently by imaging techniques like remote sensing (see also Section
2.1).

Consequently, discrete sensor observations, although maybe very sparse, are
often the only source of knowledge that can actually be obtained. Even if the
estimation of a value by kriging interpolation between those sparse observations
might not be precise at all, it often provides the best results—according to bias
and variance—that can be generated from these observations [Cressie, 1990,
p. 239], [Oliver and Webster, 2015, p. 88].

Notwithstanding the presence of partial discontinuities, the necessary sam-
pling density for the image was estimated by Equation 5.8. Because it entails
the range parameter, which is not known beforehand for this dataset, it was
estimated iteratively to be about 22 grid cells. With Equation 5.8, we get
186 observations as minimum density, which was rounded to 200 randomly
dispersed observations for the experiment. This results in 19,900 variogram
points (see Section 4.2) by pairwise combination.

It has to be stated, though, that the equation was deduced for phenom-
ena that are considered stationary, which is not strictly the case for the given
dataset. Depending on the aim of the interpolation, this approach might never-
theless very well be reasonable, as will be discussed with respect to the results
below.

As already mentioned, the idea of the experiments described in this sec-
tion is to treat the grid derived from satellite observation as reference, just
like the synthetic random fields are treated in Section 5.3.1. Analogously, a
random set of cells is used as observations and error assessment is also per-
formed by calculating the difference between the reference model—in this case
the satellite image—and the one derived from the interpolated observations.
Consequently, the error assessment can be used to evaluate the quality of the
chosen interpolation method as a whole.

In analogy to the variation of methods and parameters (Section 5.5) carried
out for finding the best variogram fitting configuration (Section 6.2.1), a list
of options is set up in Table 6.3.

Again, the options the table contains are systematically combined to cover
all possible configurations. In addition to the parameters used in Section 6.2.1,
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the type of the covariance function cov_fnc was also chosen to be varied in
order to allow for better adaptation to the specifics of the given image. On
the other hand, the parameter split_dim for selecting the split dimension is
not necessary here because with a purely spatial variogram there is only one
dimension the splitting hyperplane can be moved along. Therefore, together
with the other options, the number of variants also sums up to 108.

Searching for the optimal configuration would be rather cumbersome with-
out the tool introduced in Section 5.5.

Process Parameter Variants Number

aggr split_pos mid med mea 3

aggr_pos mid med mea 3

vrgr_fit cov_fnc sph exp gau 3

wght_fnc equ lin log sin 4

Total: 108

Table 6.3: Process method variants for interpolation of sea surface temperature

6.6.2 Results

In analogy to the evaluation in Section 6.2.1, the results of the 108 simula-
tions are assessed by plotting the primary quality indicator RMSE against
two other indicators: the residuals from the Gauss-Newton fitting procedure
(RMSE_GN) and the range value (RNG).

As Figure 6.16 reveals, there is no strong correlation between range and
RMSE as has been in the experiment of Section 6.2.1. Unlike in that experi-
ment, we do not find such a distinct pattern of range for the satellite image.
Phenomena like circulation cells and eddies [Sabins, 1996, Peng et al., 2001]
partly disturb the continuity of the system and therefore also the strong cor-
relation between estimated range and interpolation quality.
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Figure 6.16: Evaluation diagrams of 108 parameter option variants with
RMSE values plotted against the residuals from Gauss-Newton optimization
RMSE_GN (l), and against the range RNG (r)

The 15 variants with lowest RMSE that are listed listed in Table 6.4 reveal
the superiority of the exponential covariance function, the logarithm-based
weighting function (wgt_fnc) and the median value for both partitioning pa-
rameters split position (split_pos) and aggregation position (aggr_pos).

Tabelle2_2

Seite 1

nr split_pos aggr_pos wgt_fnc cov_fnc rng rmse rmse_gn
1 med med log exp 23,33 2,40 2,60

2 mea mid log exp 24,70 2,41 2,54

3 med mid sin exp 33,84 2,41 2,40

4 med mid lin exp 33,80 2,42 2,56

5 mid mid log exp 32,99 2,42 2,45

6 med mid log exp 32,81 2,42 2,40

7 med mea log exp 32,75 2,43 2,44

8 mid mid sin exp 34,76 2,43 2,52

9 mid mea equ exp 80,48 2,46 2,79

10 mid mea lin exp 80,48 2,46 2,79

11 mid mea log exp 80,48 2,46 2,79

12 mid mea sin exp 80,48 2,46 2,79

13 mid med equ exp 80,48 2,46 2,79

14 mid med lin exp 80,48 2,46 2,79

15 mid med log exp 80,48 2,46 2,79

Table 6.4: Listing of the 15 of 108 configuration variants with the lowest RMSE

Figure 6.17 illustrates the fitting of the variogram model to the aggregated
points from the experimental variogram that yields the smallest RMSE when



170

applied for interpolation (first row of Table 6.4).
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Variogram generated by parameters:
split_dim=max_rel_dev, split_pos=med, aggr_pos=med, wgt_fnc=log, cov_fnc=exp

Figure 6.17: Variogram generated by the random observations on the sea sur-
face temperature (SST) image; the distance unit 4.6 km results from the pixel-
wise treatment of the data, the unit K2 is due to the square expression within
the variogram (Equation 4.2)

The point distribution reveals the striking pattern of a decreasing semivari-
ance for big distances, which indicates the anomaly of non-stationarity caused
by oceanic fronts, as already mentioned above. Apart from the discontinuities
in the upper half of the satellite image (Figure 6.15), there are large areas of
similar value that are distributed all over the region. So there is a consider-
able amount of rather distant pairs of observations with semivariances that
are smaller than the average, which leads to the variogram pattern as can be
found in Figure 6.17.
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(a) Reference satellite im-
age (see Figure 6.15 for
source specification)

(b) Grid derived from inter-
polation of samples by krig-
ing

(c) Difference map between
reference image and inter-
polated grid

Figure 6.18: SST satellite image on which 200 random observations were car-
ried out for interpolation by kriging; from that, a difference map can be derived

6.6.3 Conclusions

As the kriged field grid in Figure 6.18(b) shows, the interpolated model does
not seem to accordingly represent the patterns that can be identified in the
reference satellite image. There are also interpolation artefacts manifested as
prussian helmets [Webster and Oliver, 2007, p. 39], indicating some degree of
incompatibility between the observed phenomenon and the interpolated model.
This discrepancy also induces the noticeable textured difference image (Figure
6.18(c)).

These negative quality indicators do not, however, disqualify the interpo-
lation method as a whole. It can still provide a valid representation of the
phenomenon in terms of minimum RMSE towards the reference, which was
target indicator used here.

When an authentic realization according to the covariance structure under-
lying the phenomenon is prioritized, a conditional simulation [Burrough et al.,
2015, p. 190] might be preferred. If the focus is to estimate the average temper-
ature of a region—e.g. for energy calculations in hurricane models [Michaud,
2001]—a target indicator like the deviation of the mean should be considered
in search of appropriate methods and parameters.

So the selection of the appropriate interpolator depends on the objectives
and circumstances of the monitoring as much as on the phenomenon itself
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[Peng et al., 2001, p. 160]. When observing a high resolution reference model
and comparing the interpolated model with it, as was carried out in this ex-
periment, the interpolation method can adapt to those conditions.

While following the paradigm of the “closed loop” [Sun and Sun, 2015, p. 9],
the framework presented here allows for variation of reference models, inter-
polation methods, parameter options, and indicators for quality and efficiency
in order to address various objectives.



Chapter 7

Conclusions and Perspective
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The monitoring of continuous phenomena is a complex and challenging task
on many levels. In this thesis, a holistic concept has been proposed to divide
this task into small and cohesive units of operation. They have to be processed
sequentially and are interdependent since each process step uses the output of
its predecessor as input. There are unlimited options of configuration within
this process chain to control its behaviour.

In order to automatize and standardize the process of continuous improve-
ment, a generic model for systematic variation of methods and parameters
has been worked out. For evaluation of these generated variants, diverse in-
dicators have been identified and specified, of which model quality and the
computational workload are the ones that were examined closer here.

The main contributions of this work to the subject area of monitoring con-
tinuous phenomena are summarized below:

Minimum Sampling Density Estimation (Sections 5.3.2, 6.1) In or-
der to estimate the average sampling density that is sufficient to capture a
particular phenomenon, a formula was deduced that derives this density from
the extent and the dynamism parameter range. It presumes the range param-
eter to be known or to be derived from initial observations.

Variogram Fitting (Sections 5.3.5, 6.2) Variogram fitting is the key task
of geostatistics. A new and generic method based on binary space partitioning
(BSP) was proposed to aggregate variogram points of arbitrary dimensionality
in order to unburden the subsequent parameter fitting procedure.

Model Merging (Sections 5.4.2, 6.3) The merging of several grid models
of one spatial region addresses two challenges that are common for monitoring
systems: (1) the continuous and smooth update of a real-time model by new
observations and (2) the handling of large sets of observations by subdivision
(divide-and-conquer approach). The method exploits the kriging variance to
define reasonable weights for cells of the source models by which they are
combined.

Compression of Sensor Data (Sections 5.4.3, 6.4) An algorithm for
compression and progressive retrieval of observational data of arbitrary di-
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mensionality was proposed. Its predominant aim is to improve the sufficiency
of sensor data transmission and archiving. In progressive mode, it provides
coarse values of low data volume and increases in accuracy with each trans-
mission step.

Systematic Variation and Evaluation of Configurations (Section 5.5)

The tools described above entail unlimited potential for variation and con-
figuration in order to adapt to the observed phenomena and to thus provide
optimal interpolation results. When combining the variations within a pro-
cess chain, the number of possible configurations to test and evaluate might
quickly multiply to large numbers. To handle this complexity within a simu-
lation framework is then a problem in its own right. A generic and coherent
architecture to switch between methodological variants or to iterate numerical
parameters was designed.

Quantification of Computational Workload (Section 5.5.2) Limited
computational resources are often a crucial issue, especially for wireless sensor
networks, environments with real-time requirements, and large datasets. A
strategy for machine-independent description of computational workloads was
developed and tested. It keeps track of the number of CPU cycles while dif-
ferentiating portions of code capable and not capable of multithreading. While
the conventional quantification by execution time ignores the parallelization
facilities of both software and hardware, the proposed approach provides much
more sophisticated information about the scalability of an implementation.

The features above have been implemented to plan, perform, provide, archive,
evaluate and continuously optimise environmental monitoring processes and
their results. Most of the proposed algorithms have been tested and evaluated
with support of the tool for systematic variation and evaluation. Beside using
synthetic models as reference, the algorithms were also applied to real world
data, namely a satellite image for sea surface temperature (see Section 6.6).
The concept for quantification of computational workload was tested for the
computing-intensive task of random field generation.
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In the course of the work there was a constant evolution towards increas-
ingly abstract concepts to describe and quantify the manifold aspects of envi-
ronmental monitoring. This is the case for input parameters like phenomenon
dynamism, sampling density, or possible transmission bandwidth. The system
might be specified by its algorithms, parameters, workload, computer power,
storage space, energy demand, and response time. The generated output will
predominately be evaluated by its accuracy and resolution. For a thorough
planning and/or evaluation of a monitoring system, a systematic considera-
tion of these issues are certainly helpful (see Section 5.5.4).

The proposed solutions and evaluation tools do undoubtedly leave room
for further investigation and improvement. The intention of the work was
not to thoroughly investigate one narrow problem area, but to aim at several
challenges that are specific for the monitoring of continuous phenomena. For
systematic evaluation of the efficiency of various solutions, a generic frame-
work is provided. New methods with associated parameter settings can easily
be integrated and evaluated by using the present infrastructure. The circu-
lar arrangement of the process chain—with genuine RMSE between synthetic
and derived model—allows for iterative investigation and improvement of the
monitoring task as a whole.

There are yet many challenges to overcome on the way towards a compre-
hensive, generic and consistent solution for environmental monitoring. In the
long-term perspective, one might envision a standardized and interoperable
infrastructure that mediates between the available sensor observations and an
adequate representation of the phenomenon. Given the insights and achieve-
ments of this work, the prerequisites for such an environment are listed below:

Interpolation Method Consolidation Depending on the phenomenon ob-
served, the aims of the monitoring and the resources available to achieve it,
the method of interpolation has to be chosen carefully. Because of the sheer
complexity of the task of interpolation and the plethora of methods available
to address it, it is in most cases difficult to decide which one serves the given
objectives best. Much specific knowledge and experience is necessary to come
to well-founded decisions here.

There are many works dealing with sensor observations and interpolation
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with different methods and/or parameters. Evaluation is then typically car-
ried out by metrics generated by methods like cross-validation [Burrough et al.,
2015, Gama and Pedersen, 2007, Meyers, 1997]. The problem with these ap-
proaches is that cross-validation is not always an indicator for interpolation
quality or, pointed out in [Oliver and Webster, 2015, p. 68]: “The results of
cross-validation do not necessarily resolve or justify a choice of model.” Con-
tinuous random fields and simulation scenarios provide an alternative way of
evaluation of methods and parameters.

There is, of course, the disadvantage that the validity of the synthetic models
might be doubted. This does not mean, however, that it precludes to draw
valid conclusions from such models that are useful in practice. This is the
case because there is no absolute model validity anyway [Law, 2014, p. 247]
and real environmental phenomena do only approximately represent random
processes [Ginevan and Splitstone, 2004].

In view of the vast amount of interpolation methods and their variants
and associated parameters, there ought to be some mapping policy that re-
lates phenomenon characteristics to interpolation variants which best adapt to
those particular characteristics. A simulation framework with specialized fea-
tures for systematic variation of both the phenomenon and the interpolation
method facilitates the necessary steps towards this goal. The present work
might contribute some useful approaches to this endeavour.

Formal Method Specification As mentioned above, there is an ever-growing
amount of interpolation methods and associated variants and parameters, and
also of input and output data formats. The way these specifics are addressed
will substantially depend on the particular system and the developers’ view on
the problem that is factually materialized in form of the implemented method
calling convention.

These circumstances might make it difficult to reproduce a particular pro-
cessing scenario when a different software product has to be used for some
reason. Even more effort might be necessary when the interpolation task is
supposed to be run using software as a service (SaaS) where eventually an
established interface has to be changed.

One approach to address such problems would be to pursue some degree



178

of interoperability by working out an abstract and standardized definition of
the process of interpolation. Even if such a standard would not be directly
implemented by software suppliers, it would at least provide a common ground
for communication about how a particular implementation works instead of
more or less taking it as a black box.

Such a common ground specification will of course presume the agreement
about its necessity and general structure. The general trend towards cloud
computing with its associated advantages might foster developments towards
such an agreed specification.

Field Data Type for Data Provision Observations of continuous phe-
nomena are of specific character depending on the circumstances under which
they have to bee carried out. More often than not, they do not cover the points
or regions that are of interest for the task or question at hand. So instead of
the original observational data, applications rather need estimations of the ob-
served variable at arbitrary points or regions in space and time. This is crucial
to perform any analysis that is based on the combination of the observed value
with some other occurrence, often in order to identify any causative interaction
[Cressie and Wikle, 2011, p. 32].

To support such analyses or also for ad hoc queries in space and time, it
is necessary to provide an infrastructure that can serve as mediator between
raw data and expected queries. One important means to address this task
is the introduction of a specific field data type that is intended to represent
continuous phenomena [Liang et al., 2016, Camara et al., 2014, Couclelis,
1992].

Unfortunately, the described concept of a field data type presumes the at-
tributes already mentioned: the consolidation and the standardised description
of methodological variants of interpolation.

In an ideal scenario, such a system is continuously fed with observations and
simultaneously provides a real-time model or historical data via a standardized
interface. Apart from interpolated and cached data to speed up queries, the
observational data could be stored without redundant interpolations. Thus,
the model of the phenomenon can be provided dynamically at arbitrary points
or regions as a function of original observations and the associated interpolation
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specifications. Such an infrastructure would significantly increase the usability
of such observational data and therefore widen the range of their utilization.

Complex Event Definition Another feature that was mentioned but not
thoroughly covered in this work is the definition of complex events that are
associated with a continuous dynamic field. It entails the specification of a
spatio-temporal region for which some condition about the observed value has
to be confirmed or rejected. An exceeded daily maximum value of a particular
pollutant in a city district would be an example. More complex aggregations
like mean or variance or combinations of them—e.g. to permanently exclude
hazardous concentrations by observations—might be more appropriate. The
definition of such a hazardous situation as null hypothesis that permanently
has to be rejected [Guttorp, 2001, p. 24] would entail insufficient observation,
indicated by high regional kriging variance, as alarm triggering event.

Furthermore, the spatio-temporal regions under investigation might be more
complex than static areas. A trajectory can also be used to interact with the
model. For example, the radiation that will be accumulated by a vehicle during
a planned mission in a contaminated region could be estimated by spatio-
temporally intersecting the trajectory with the model and accumulating the
radioactive exposure.

So when given an appropriate model, the continuous phenomenon just
means that—in a figurative sense—it is possible to place or move sensors ar-
bitrarily in the region that is sufficiently covered by interpolation. This kind
of continuous replication of the observed field is a powerful approach wherever
flexible usage of the variable of interest is needed. Other representations like
grids or isolines are not that flexible. However, they can of course easily be
derived from the field data type at arbitrary resolution.

From the features listed above, each single one is more or less dependent on
its predecessors in the given order. Although these features are interdependent
in operation, the yet unsolved problems which they contain can—at least to a
certain degree—maybe be demarcated through abstraction and thus be worked
on individually. This provides plenty material for challenging scientific work
in this area.
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The circular principle of simulated monitoring presented in this work can
easily be extended to develop and evaluate solutions associated with the sce-
narios described above. The detection of a critical state in a continuous field
may serve as an example. The critical state can be expressed by a polygon for
which a maximum daily average of the value of interest is defined. The actual
average value can be determined from the three-dimensional grid (x, y, t) in-
terpolated from the simulated observations by aggregating all grid cells within
the spatio-temporal region of interest (polygon and day). By considering the
kriging variance when performing such aggregations, a confidence interval for
the estimated value can be deduced.

This scenario is an example of how knowledge about a continuous phe-
nomenon is expressed on a higher level of abstraction. Instead of dealing with
individual sensor observations, the context here are aggregations and probabil-
ities or confidence estimations. From the current developments in this subject
area it can be concluded that for responsive monitoring systems such an ab-
straction will become more common. The process of interpolation itself will
further diversify according to methods and variants and a main challenge here
will be to assess the dynamism of a phenomenon by observations and conse-
quently choose the appropriate interpolation method with appropriate associ-
ated parameters. Extensive experimental work will help to find and formulate
general rules to govern this decision process.

On the input side of monitoring, there has been much research on behalf
of network organization and data transmission strategies. The efficiency of
this component and the subsequent data processing will remain subject to
continuing investigation and improvement. On the output side, an increasing
degree of abstraction with respect to the representation of knowledge about
continuous phenomena becomes apparent when regarding concepts like the
field data type or aggregations derived from it.

Future developments might integrate data stream management, selection
and execution of appropriate interpolation algorithms and parameters, sensor
data data management with help of the field data type, provision of a query
language suited for the context of continuous phenomena and, based on that,
an infrastructure for critical state detection and notification.

To address this problem field in an appropriate and substantial manner,
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several conflicting requirements need to be carefully balanced: capability, per-
formance, efficiency, interoperability, extensibility, ease of use, credibility and
popularity. The priorities of these requirements will change several times dur-
ing a system’s life cycle.

With the increasing availability of environmental observations and the grow-
ing demand for actual knowledge derived from them [Craglia et al., 2012], it
is just a question of consequential reasoning to come to a compound of mod-
ular solutions as suggested in this work. Just like with other subject areas
in the realm of geographic information science, the approaches for the moni-
toring of continuous phenomena will have to undergo a continuous process of
consolidation and specification before becoming a ubiquitous standard.
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