Die grünen 20er: Aspekte der Nachhaltigkeit im Fachbereich Architektur

Endbericht der Arbeitsgruppen

Jade Hochschule Oldenburg
Fachbereich Architektur
Sommersemester 2020
WPK Die grünen 20er
Wert + Prof. Willmann
Die grünen 20er:
Aspekte der Nachhaltigkeit im Fachbereich Architektur

Endbericht der Arbeitsgruppen

Inhaltsverzeichnis

Einleitung .. 1
AG Gebäude ... 3
 Forschungsfragen ... 3
 Datengrundlage ... 3
 Erkenntnisse der Recherche .. 4
 Altbau des Hauptgebäudes HA (Lichthof), Ofener Straße 16 .. 4
 Dienstgebäude Architektur (ZA), Ofener Straße 15 ... 8
 Auguststraße 5 ... 14
 Zusammenfassung ... 19
AG Konsum ... 20
 Untergruppe Mensa ... 20
 Forschungsfragen ... 20
 Datengrundlage .. 20
 Erkenntnisse der Recherche ... 21
 Zusammenfassung ... 24
 Untergruppe Fleischkonsum .. 24
 Forschungsfragen ... 24
 Datengrundlage .. 24
 Erkenntnisse der Recherche ... 25
 Zusammenfassung ... 26
 Untergruppe Modellbau ... 27
 Forschungsfragen ... 27
 Datengrundlage .. 27
 Erkenntnisse der Recherche ... 28
 Zusammenfassung ... 32
 Untergruppe Müll .. 33
 Forschungsfragen ... 33
 Datengrundlage .. 33
 Erkenntnisse der Recherche ... 33
 Zusammenfassung ... 34
AG Mobilität .. 39
 Forschungsfragen ... 39
 Datengrundlage .. 39
 Erkenntnisse der Recherche ... 39
 Zusammenfassung ... 40
Einleitung

Im Rahmen des Wahlpflichtkurses „Die grünen 20er“ an der Jade Hochschule im Fachbereich Architektur untersuchen die Studenten den CO2 Ausstoß am eigenen Fachbereich.

Im Folgenden werden die Forschungsfrage, Datengrundlage und Erkenntnisse der einzelnen Arbeitsgruppen vorgestellt.

AG Gebäude

Cosima Plett, Maren Schäfer, Luisa Steinkamp

Forschungsfrage
Wie hoch ist der Energiebedarf und die einhergehende CO2-Emission der Gebäude der Jade Hochschule am Standort Oldenburg und wie kann dieser gesenkt werden?

Datengrundlage
Für die Berechnungen wird die Software „Energieberater 18599 3D Plus“ von Hottgenroth Software verwendet.

Für die Eingabe der Gebäudewerte liegen Grundrisse, Jahresberichte und Wärmekonzepte vor.

Neben dem Gasverbrauch liegen Stromverbräuche der Hochschule aus dem Jahr 2019 vor:

<table>
<thead>
<tr>
<th>Ort</th>
<th>kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ofener Straße 15 (ZA)</td>
<td>50.000</td>
</tr>
<tr>
<td>Ofener Straße 16</td>
<td>756.775</td>
</tr>
<tr>
<td>Lichthof angenommen mit 1/4</td>
<td>189.193</td>
</tr>
</tbody>
</table>

In der CO2-Bilanzierung wird davon ausgegangen, dass die Hochschule mit Ökostrom versorgt wird. Im Durschnitt sinken die Emissionen durch Ökostrom bis zu 90%, demnach wird die CO2-Bilanz des Stromverbrauchs bei den weiteren Berechnungen nicht berücksichtigt.
Erkenntnisse der Recherche

Altbau des Hauptgebäudes HA (Lichthof), Ofener Straße 16

Projektdaten

- Bestandsgebäude von 1847, unter Denkmalschutz
- 3 Vollgeschosse, 1 ausgebautes Dachgeschoss
- Büro- und Verwaltungsgebäude
- Grundfläche ~1100m²
- Nettogrundfläche ~2800m²
- Wärmeversorgung durch zwei Gas-Brennwertkessel (Baujahr 2006)

Ermittelte Daten

- Nutzenergiebedarf 147,4 kWh/m²
- Endenergiebedarf 188,7 kWh/m²
- Primärenergiebedarf 192,3 kWh/m²
- CO2-Emissionen 44kg/m²

tatsächliche Energiekosten (Gas) im Jahr 2019

Ofener Straße 16: 1.030.794,00 kWh [37.649,42€]

- HA (Altbau) etwa ¼ = 257.698,50 kWh
- berechnet: ~ 517.000 kWh
- es wird nur etwa die Hälfte der berechneten Energie tatsächlich verbraucht
- das lässt sich auf den sogenannten Prebound-Effekt zurückführen: aufgrund des Wissens über die schlechte Energieeffizienz des Gebäudes, wird generell beim Heizen gespart.
Abgeleitete Maßnahmen

Variante 1: Innendämmung

Variante 2: Wärmepumpe

Variante 3: Biomasse Erzeuger

Variante 4: Kombination Innendämmung + Wärmepumpe

Variante 5: Kombination Innendämmung + Biomasse Erzeuger

Variante 1: Innendämmung

Die Außenwände des Bestandsgebäudes sind nicht gedämmt. In der Variante 1 ist eine Innendämmung von 8 cm an alle Außenwände angesetzt.

➢ Der U-Wert 1,42 W/m²K verbessert sich auf 0,37 W/m²K

➢ Der Primärenergiebedarf wird um 35% auf 125 kWh/m² gesenkt

Variante 2: Wärmepumpe

Zum bisherigen Brennwert-Kessel wird eine Sole-Wasser-Wärmepumpe zusätzlich angeschlossen.

➢ Der Primärenergiebedarf wird um 40% auf 115 kWh/m² gesenkt.
Variante 3: Biomasse-Wärmeerzeuger

Anstelle des Brennwert-Kessels wird ein handbeschickter Biomasse-Wärmeerzeuger mit Holzpellets eingesetzt.

- Der Primärenergiebedarf wird um 67% auf 64 kWh/m² gesenkt.

Variante 4: Innendämmung + Wärmepumpe

Variante 1 und 2 werden kombiniert: eine zusätzliche Innendämmung, sowie eine zusätzliche Wärmepumpe zum Ist-Zustand.

- Der Primärenergiebedarf wird um 57% auf 83 kWh/m² gesenkt.

Variante 5: Innendämmung + Biomasse-Erzeuger

Variante 1 und 3 werden kombiniert: eine zusätzliche Innendämmung, sowie ein handbeschickter Biomasse-Wärmeerzeuger anstelle des bisherigen Heizkessels.

- Der Primärenergiebedarf wird um 77% auf 44 kWh/m² gesenkt.
Angesichts der verschiedenen Ergebnisse, lässt sich sagen, dass bereits eine bauliche Maßnahme wie das Anbringen einer Innendämmung (Variante 1) sichtbare Veränderungen mit sich bringt.

Das Ersetzen des Heizkessels mit einem Biomasse-Wärmeerzeuger (Variante 3) ist bezüglich dem Einsparen des Primärenergiebedarfs und der CO2-Emission die beste Variante, hat jedoch einen höheren Endenergiebedarf als die anderen Varianten.

Die Variante 5, also die Kombination von einer angesetzten Innendämmung + dem Biomasse-Wärmeerzeuger anstelle des Heizkessels, ist im Varianten-Vergleich der Sieger.
Dienstgebäude für Architektur (ZA), Ofener Straße 15

Projektdaten
- Bestandsgebäude von 1867, Fassade unter Denkmalschutz
- drei Vollgeschosse, ein Dachgeschoss
- Büro- und Verwaltungsgebäude
- Grundfläche 772,1m²

Ermittelte Daten
- Nutzenergiebedarf 135,5 kWh/m²
- Endenergiebedarf 181,4 kWh/m²
- Primärenergiebedarf 197,6 kWh/m²
- CO2-Emissionen 49 kg/m²

Tatsächliche Energiekosten (Gas) im Jahr 2019
Ofener Straße 15: 264.544,00 kWh [9.855,63€]
Berechnete Kosten:
Ofener Straße 15: 385.880 kWh [37.175€]

➢ Tatsächliche Kosten sind also 68% von den berechneten Kosten.
Abgeleitete Maßnahmen

Variante 1: Wärmepumpe

Variante 2: Fenster

Variante 3: Wand

Variante 4: Biomassekessel

Variante 5: Kombination Wärmepumpe + Fenster + Wand

Variation 6: Kombination Biomassekessel + Fenster + Wand

Variante 1: Wärmepumpe

Es wird in Variante 1 der alte Brennstoffkessel von 1990 gegen eine Sole-Wasserwärmpumpe ausgetauscht.

Der Primärenergiebedarf senkt sich um 19% auf 160,9 kWh/m², allerdings gehen die Brennstoffkosten um 18% nach oben, da eine Wärmepumpe auch viel Strom verbraucht.

<table>
<thead>
<tr>
<th>Nutzenergiebedarf</th>
<th>135,5 kWh/m²</th>
<th>135,1 kWh/m²</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anlagenverluste</th>
<th>45,9 kWh/m²</th>
<th>-171 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-32,7 kWh/m²</td>
<td>-78,8 kW/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endnergie (bezogen auf Brennstoff)</th>
<th>181,4 kWh/m²</th>
<th>-43 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>163,4 kWh/m²</td>
<td>-78,8 kW/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primärenergie</th>
<th>197,6 kWh/m²</th>
<th>-19 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180,9 kWh/m²</td>
<td>-36,7 kW/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO2-Emission</th>
<th>49 kg/m²</th>
<th>+7 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53 kg/m²</td>
<td>+4 kg/m²</td>
</tr>
</tbody>
</table>

Variante 2: Fenster

Die bisherigen Innenfenster mit einem u-Wert von 3,00 W/m²K werden gegen Fenster mit einem u-Wert von 1,50 W/m²K ausgetauscht.

- Der Primärenergiebedarf wird um 6% auf 184,9 kWh/m² gesenkt

<table>
<thead>
<tr>
<th>Nutzenergiebedarf</th>
<th>135,5 kWh/m²</th>
<th>125,6 kWh/m²</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anlagenverluste</th>
<th>45,9 kWh/m²</th>
<th>-7 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42,5 kWh/m²</td>
<td>-9,9 kW/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endnergie (bezogen auf Brennstoff)</th>
<th>181,4 kWh/m²</th>
<th>-7 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>163,1 kWh/m²</td>
<td>-13,4 kW/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primärenergie</th>
<th>197,6 kWh/m²</th>
<th>6 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>184,9 kWh/m²</td>
<td>-12,6 kW/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO2-Emission</th>
<th>49 kg/m²</th>
<th>5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>46 kg/m²</td>
<td>-3 kg/m²</td>
</tr>
</tbody>
</table>

Bewertung

- **EnEV**
Variante 3: Wandinnendämmung

Die Außenwände des Bestandgebäudes sind nicht gedämmt. In der Variante 3 wurde eine Innendämmung von 4 cm angesetzt.

- Der U-Wert 1,04 W/m²K verbessert sich auf 0,48 W/m²K
- Der Primärenergiebedarf senkt sich um 20% auf 158,2 kWh/m²

<table>
<thead>
<tr>
<th>Nutzenergiebedarf</th>
<th>Anlagenverluste</th>
<th>Endenergie</th>
<th>Primärenergie</th>
<th>CO₂-Emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>135,5 kWh/m²</td>
<td>45,9 kWh/m²</td>
<td>181,4 kWh/m²</td>
<td>197,6 kWh/m²</td>
<td>49 kg/m²</td>
</tr>
<tr>
<td>106,0 kWh/m²</td>
<td>35,9 kWh/m²</td>
<td>141,9 kWh/m²</td>
<td>168,2 kWh/m²</td>
<td>40 kg/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>55/58/98</td>
</tr>
</tbody>
</table>

Variante 4: Biomasse- Wärmeerzeuger

Anstelle des Brennwertkessels wird ein handbeschickter Biomasse-Wärmeerzeuger mit Holzpellets eingesetzt.

- Der Primärenergiebedarf wird um 52% auf 86,7 kWh/m² gesenkt
- Der Endenergiebedarf pro m² steigt um 54%, was zeigt das die kosten höher sind.
Variante 5: Kombination Wärmepumpe + Innendämmung + Fenster

Variante 1 + 2 + 3 werden kombiniert. Der alte Heizkessel wird ersetzt durch eine Sole-Wasser Wärmepumpe, die Fenster werden durch Fenster mit einem besseren U-Wert ersetzt und die Außenwand bekommt eine 4 cm Innendämmung.

- Der Primärenergiebedarf wird um 38% verringert auf 121,9 kWh/m²

<table>
<thead>
<tr>
<th>Nutzenergiebedarf</th>
<th>135,5 kWh/m²</th>
<th>-29%</th>
</tr>
</thead>
<tbody>
<tr>
<td>98,4 kWh/m²</td>
<td>-33,1 kWh/m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anlagenverluste</th>
<th>45,9 kWh/m²</th>
<th>-142%</th>
</tr>
</thead>
<tbody>
<tr>
<td>-19,1 kWh/m²</td>
<td>-65,0 kWh/m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endenergie (bezogen auf Brennwert)</th>
<th>181,4 kWh/m²</th>
<th>-57%</th>
</tr>
</thead>
<tbody>
<tr>
<td>77,3 kWh/m²</td>
<td>-104,1 kWh/m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primärenergie</th>
<th>197,6 kWh/m²</th>
<th>-33%</th>
</tr>
</thead>
<tbody>
<tr>
<td>121,9 kWh/m²</td>
<td>-75,8 kWh/m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO2-Emission</th>
<th>49 kg/m²</th>
<th>-18%</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 kg/m²</td>
<td>-8 kg/m²</td>
<td></td>
</tr>
</tbody>
</table>

Variante 6: Kombination Biomasse-Erzeuger + Innendämmung + Fenster

In Variante 6 wird ein handbeschickter Biomasse-Erzeuger eingesetzt, sowie eine Innendämmung an die Außenwände angebracht und die Fenster werden durch Fenster mit einem besseren U-Wert ersetzt.

- Der Primärenergiebedarf wird um 64% auf 70,9 kWh/m² gesenkt

<table>
<thead>
<tr>
<th>Nutzenergiebedarf</th>
<th>135,5 kWh/m²</th>
<th>-29%</th>
</tr>
</thead>
<tbody>
<tr>
<td>98,4 kWh/m²</td>
<td>-33,1 kWh/m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anlagenverluste</th>
<th>45,9 kWh/m²</th>
<th>+102%</th>
</tr>
</thead>
<tbody>
<tr>
<td>92,3 kWh/m²</td>
<td>+47,0 kWh/m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endenergie (bezogen auf Brennwert)</th>
<th>181,4 kWh/m²</th>
<th>+4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>183,4 kWh/m²</td>
<td>+8,0 kWh/m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primärenergie</th>
<th>197,6 kWh/m²</th>
<th>+64%</th>
</tr>
</thead>
<tbody>
<tr>
<td>70,9 kWh/m²</td>
<td>-126,6 kWh/m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO2-Emission</th>
<th>49 kg/m²</th>
<th>+56%</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 kg/m²</td>
<td>-29 kg/m²</td>
<td></td>
</tr>
</tbody>
</table>

Bewertung
Ergebnis

Primärenergiebedarf pro m² [kWh/m²a]

<table>
<thead>
<tr>
<th>IST-ZUSTAND</th>
<th>VARIANTE 1</th>
<th>VARIANTE 2</th>
<th>VARIANTE 3</th>
<th>VARIANTE 4</th>
<th>VARIANTE 5</th>
<th>VARIANTE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>198</td>
<td>-19%</td>
<td>-6%</td>
<td>-20%</td>
<td>-56%</td>
<td>-38%</td>
<td>-64%</td>
</tr>
</tbody>
</table>

Endenergiebedarf pro m² [kWh/m²a]

<table>
<thead>
<tr>
<th>IST-ZUSTAND</th>
<th>VARIANTE 1</th>
<th>VARIANTE 2</th>
<th>VARIANTE 3</th>
<th>VARIANTE 4</th>
<th>VARIANTE 5</th>
<th>VARIANTE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>-43%</td>
<td>-7%</td>
<td>-22%</td>
<td>+54%</td>
<td>-54%</td>
<td>+4%</td>
</tr>
</tbody>
</table>

CO₂-Emissionen pro m² [kg/m²a]

<table>
<thead>
<tr>
<th>IST-ZUSTAND</th>
<th>VARIANTE 1</th>
<th>VARIANTE 2</th>
<th>VARIANTE 3</th>
<th>VARIANTE 4</th>
<th>VARIANTE 5</th>
<th>VARIANTE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>+7%</td>
<td>-5%</td>
<td>-18%</td>
<td>-52%</td>
<td>-18%</td>
<td>-58%</td>
</tr>
</tbody>
</table>
Auguststraße 5

Projektdaten

- Bestandsgebäude von 1867, nicht unter Denkmalschutz
- 3 Vollgeschosse, ein Dachgeschoss
- Leerstehend und ungenutzt, keine Heizungsanlage
- Grundfläche 811,1 m²

Geschätzte Daten:

- Nutzenergiebedarf 253 kWh/m²
- Endenergiebedarf 307,4 kWh/m²
- Primärenergiebedarf 316,6 kWh/m²
- CO₂-Emissionen 74 kg/m²a

Keine Angaben zu tatsächlichen Energiekosten
Berechnete Kosten:
- Auguststraße: 101.636 kWh (23.460 €)

Abgeleitete Maßnahmen

- Variante 1: Fenster
- Variante 2: Fußboden und Geschossdecke
- Variante 3: Wanddämmung 4cm
- Variante 4: Wanddämmung 8cm
- Variante 5: Fenster und Wanddämmung 8cm
- Variante 6: Hüllfläche komplett
- Variante 7: Hüllfläche und Biomasse
- Variante 8: Hüllfläche und Wärmepumpe
Variante 1: Fenster

In dieser Variante werden die aktuellen Fenster durch 3-fach verglaste Fenster ersetzt.

- Der Primärenergiebedarf senkt sich um 13% auf 275,9 kWh/m²
- Der U-Wert senkt sich um 85%

Variante 2: Fußboden und Geschossdecke

Der Fußboden wird gedämmt und bekommt eine Fußbodenheizung, die Geschossdecke wird gedämmt.

- Der Primärenergiebedarf senkt sich um 17% auf 262,8 kWh/m²
Variante 3: Wanddämmung 4 cm

Die Außenwand mit einer 4 cm dicken Dämmung gedämmt.

- Der Primärenergiebedarf senkt sich um 20% auf 252,3 kWh/m²

Variante 4: Wanddämmung 8 cm

Die Außenwand mit einer 8 cm dicken Dämmung gedämmt.

- Der Primärenergiebedarf senkt sich um 25% auf 236,2 kWh/m²

Variante 5: Fenster und Wanddämmung 8 cm

Die Außenwand mit einer 8 cm dicken Dämmung gedämmt und die Fenster werden ausgetauscht.

- Der Primärenergiebedarf senkt sich um 42% auf 182,7 kWh/m²
Variante 6: Hüllfläche

Die Außenwand mit einer 8cm dicken Dämmung gedämmt, die Fenster werden ausgetauscht, der Fußboden und die Geschossdecke werden gedämmt.

- Der Primärenergiebedarf senkt sich um 59% auf 130,5 kWh/m²

Variante 7: Hüllfläche und Biomasse

Die Außenwand mit einer 8cm dicken Dämmung gedämmt, die Fenster werden ausgetauscht, der Fußboden und die Geschossdecke werden gedämmt, zusätzlich kommt ein Biomassekessel zum Einsatz.

- Der Primärenergiebedarf senkt sich um 62% auf 121,7 kWh/m²

Variante 8: Hüllfläche und Wärmepumpe

Die Außenwand mit einer 8cm dicken Dämmung gedämmt, die Fenster werden ausgetauscht, der Fußboden und die Geschossdecke werden gedämmt, zusätzlich kommt ein Wärmepumpe in Kombination mit einem Brennwertkessel zum Einsatz.

- Der Primärenergiebedarf senkt sich um 72% auf 88,6 kWh/m²
Ergebnis

- Da bei dem aktuellen Gebäude keinerlei Unterlagen vorhanden sind, kann von Grund auf viel erneuert werden.

- Desto mehr kann man im Vorhinein dafür sorgen, dass man einspart und verbessert. Bis zu 72%.

- Alleine durch das ersetzen der Fenster und das Dämmen der Außenwände bringt eine Verbesserung von 59%

Primärenergiebedarf pro m² [kWh/m²a]

<table>
<thead>
<tr>
<th>Ist-Zustand</th>
<th>Variante 1</th>
<th>Variante 2</th>
<th>Variante 3</th>
<th>Variante 4</th>
<th>Variante 5</th>
<th>Variante 6</th>
<th>Variante 7</th>
<th>Variante 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>317</td>
<td>276</td>
<td>263</td>
<td>252</td>
<td>236</td>
<td>183</td>
<td>130</td>
<td>122</td>
<td>89</td>
</tr>
</tbody>
</table>

Endenergiebedarf pro m² [kWh/m²a]

<table>
<thead>
<tr>
<th>Ist-Zustand</th>
<th>Variante 1</th>
<th>Variante 2</th>
<th>Variante 3</th>
<th>Variante 4</th>
<th>Variante 5</th>
<th>Variante 6</th>
<th>Variante 7</th>
<th>Variante 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>307</td>
<td>264</td>
<td>253</td>
<td>243</td>
<td>227</td>
<td>172</td>
<td>119</td>
<td>110</td>
<td>58</td>
</tr>
</tbody>
</table>
Zusammenfassung

Aus den zur Verfügung stehenden Unterlagen lassen sich folgende Daten entnehmen:

<table>
<thead>
<tr>
<th></th>
<th>Gas [kWh] im Jahr 2019</th>
<th>geschätzter Anteil des FBA</th>
<th>daraus folgender kWh Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZA</td>
<td>264.544,00</td>
<td>2/3</td>
<td>176.362,67</td>
</tr>
<tr>
<td>Hauptgebäude</td>
<td>1.030.794,00</td>
<td>1/3</td>
<td>343.598,00</td>
</tr>
<tr>
<td>Zeughausstraße 35</td>
<td>244.463,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>1.539.801,00</td>
<td></td>
<td>519.960,67</td>
</tr>
</tbody>
</table>

Daraus lässt sich schließen, dass der Fachbereich Architektur bezogen auf den Standort Oldenburg etwa 30% der Energie verbraucht.

Als Ergebnis der bereits aufgezeigten Berechnungen und Ergebnisse lässt sich zusammenfassend sagen, dass deutlich wird, wie bereits eine bauliche Maßnahme, wie z.B. das Anbringen einer Innendämmung, sichtbare Ersparnisse der CO₂-Emissionen oder des Primärenergiebedarfs zeigt.

Auch der Austausch des Wärmeerzeugers zu einem handbeschickten Biomasse Wärmeerzeugers zeigt in beiden Fällen große Wirkung.

In dem Beispiel der Auguststraße 5 lassen sich verschiedene Maßnahmen entnehmen, die vor dem Umbau und der zukünftigen Nutzung bereits beachtet und einbezogen werden können.
Die grünen 20er: Aspekte der Nachhaltigkeit im Fachbereich Architektur

AG Konsum

Madleena Brunken, Anne Feldhaus, Wiebke Hodes, Laura Klaproth, Marie Meinecke, Alicia Michalke, Catharina Schönemann

Untergruppe Mensa

Forschungsfrage

Anschließend haben wir alle Fragen zu einem Maßnahmenkatalog zusammengefasst, woraus sich unsere Schwerpunkte ergeben haben.

Datengrundlage

Neben den CO2-Emissionswerten in kg, welche wir größtenteils auf der Internetseite „klimatarier.com“ gefunden haben, mussten außerdem auch die Einkaufsmengen in kg und die Abfallmengen in kg erfasst werden.

Erkenntnisse der Recherche
Nachdem wir die ersten Informationen ausgewertet haben, fiel uns auf, dass die Mengen der Tellerrückläufe und der Mensaessenreste weniger sind als zuvor von uns angenommen. Pro Tag werden durchschnittlich 17,8 Kg an zubereiteten Speisen nicht ausgeteilt und somit entsorgt, zusätzlich werden ca. 4,6 Kg Essensreste durch Tellerrückläufe weggeschmissen.

Bei Betrachtung der Ergebnisse der Online-Umfrage ist zudem aufgefallen, dass die Tellerrückläufe hauptsächlich zustande kommen, da die Gerichte nicht den Geschmackern der Mensagäste entsprechen.

Zusammenfassung
Das Ergebnis der CO2 Bilanzierung für die Mensa im Jahr 2019 liegt bei ca. 68.000 Kilogramm CO2. Da diese Berechnung auf Grund von fehlenden Informationen allerdings teileweise lückenhaft ist, würde sich der Wert tendenziell erhöhen.

Mögliche Maßnahmen zur Verbesserung der CO2-Bilanz sind:
- CO2-Bilanz der eingekauften Lebensmittel und Getränke minimieren
- Tellerrückläufe weiter minimieren
- weniger Bio-Abfall produzieren
- geplante Mensasanierung schnellstmöglich durchführen

Untergruppe Fleischkonsum

Forschungsfrage
Den Einstieg zu unserem Thema „Fleischkonsum in der Mensa“ haben wir mit einer Mindmap begonnen, bei der wir uns Gedanken zu dem CO2-Fußabdruck der FH gemacht haben. Dabei sind wir auf folgende Fragen gekommen:

Wie nachhaltig ist das Essen in der Mensa?
Wie hoch ist der Fleischkonsum in der Mensa?
Wie hoch ist der CO2-Verbrauch von Fleisch?
Wo kommt das Mensaessen/ Fleisch her?
Wie regional kauft die Mensa ein?
Wie viel Essensreste fallen in der Mensa an (Wirtschaftlichkeit)?

Datengrundlage
Die grünen 20er: Aspekte der Nachhaltigkeit im Fachbereich Architektur

Die Maßnahmen für die CO2-Reduzierung haben wir in unserer Gruppe „Konsum“ gesammelt. Als Lösungsansätze haben wir uns folgende Maßnahmen überlegt:

- Portionsgrößen anpassen
- Übrig gebliebenes Essen an Bedürftige verschenken
- Regionale Bio-Händler aufsuchen
- Fleischgerichte nur 2-3x die Woche an bestimmten Tagen, wie z.B. Montag, Mittwoch, Freitag anbieten
- Alternativen für Fleisch anbieten (wie z.B. Gemüseburger)
- Mehr Geflügel- und Schweinefleisch anbieten

Erkenntnisse der Recherche

Biolebensmittel sind sehr wichtig, da die konventionelle Landwirtschaft dabei hilft, die Umweltbelastung durch den Verzicht auf chemisch-synthetische Pflanzenschutzmittel, die Verwendung von leicht löslichen mineralischen Düngern und möglichst artgerechte Haltung zu reduzieren. Der Anteil der ökologischen Landwirtschaft liegt in Deutschland bei 6,3% (Stand 2013). Die Hälfte der Bundesrepublik unterliegt des landwirtschaftliche Nutzung, was eine große Auswirkung auf die Umwelt hat. Eine hohe Grundwasserbelastung und Gasbildungen der schädlichen Stoffe Methan, Lachgas und CO2 sind die Folgen. Rund 60% der Flächen werden für den Futtermittelanbau und Tierhaltung genutzt, nur 20% sind direkt für den menschlichen Verzehr.

Der allgemeine Fleischkonsum liegt in Deutschland bei 60,1kg/Kopf (Stand 2018), wobei es in folgende Anteile unterteilt ist: 35,8kg Schweinefleisch, 11,9kg Geflügel, 9,5kg Rind und 1,5kg Lamm etc. Bioqualität ist für den CO2-Abdruck eher schlechter, da die Tiere länger leben und mehr Fläche haben.

Das Essverhalten hat ebenfalls eine große Auswirkung auf die Umwelt. Fleischkonsumenten verursachen einen Ausstoß von 1760kg CO2 und einen Wasserverbrauch von 1580m³. Im Gegenzug dazu versucht ein Veganer einen Ausstoß 940kg CO2 und einen Wasserverbrauch von 710m³.
Zusammenfassung
Aus unseren Recherchen hat sich folgende CO2-Bilanz für einzelne Lebensmittel ergeben:
Pro 1kg Fleisch: Rindfleisch 13,3kg CO2, Schweinefleisch 4,15kg CO2, Geflügelfleisch 3,7kg CO2
Pro 1kg Gemüse: Gemüsemix TK 415g CO2, Tomaten 340g CO2, Kartoffeln 200g CO2

Aus der Umfrage hat sich ergeben:
Untergruppe Modellbau

Forschungsfrage
Zu Beginn des Semester folgte die Aufteilung der Konsumgruppe in Untergruppe. Es wurde schnell klar, dass der Verbrauch der Materialien und das damit verbundene immer stärker aufkommende Thema Recycling zu behandeln war. Daraus konnten schnell mehrere Fragen formuliert werden:

- Wie viel Materialverbrauch fällt beim Modellbau an?
- Wie kann man den Materialverbrauch beim Modellbau reduzieren?
- Können alte Modelle recycelt werden?
- Können die Materialien sogar an andere Studierende abgegeben werden (durch eine Resteschublade)?
- Sind die Materialien wiederverwendbar?
- Wie wichtig ist es den Studierenden alte Modelle zu recyceln umso Material einzu­sparen?
- Wie sehen es die Lehrenden?
- Welchen Verbrauch hat die Modellbauwerkstatt? (Maschinenanzahl & Modelle, sonstiger Energieverbrauch)
- Kann die Modellbauwerkstatt nachhaltiger gestaltet werden?

Datengrundlage
Über einen Fragebogen, der an die Studierenden und an die Lehrenden direkt gestellt wurde, konnten die meisten der oben aufgeführten Fragen beantwortet werden. Nicht leicht waren die Fragen über der Modellbauwerkstatt zu beantworten, da kaum Daten herausgegeben wurden. Lediglich eine Liste der vorhandenen Maschinen (Marke und Anzahl) konnte für die Beantwortung genutzt werden. Die Modelle und der Verbrauch der einzelnen Maschinen wurden selbst durch Internetrecherche raus­gesucht (Herstellerseiten).

Die Daten zu den Co2-Emissionen konnten durch mühsamer Internetrecherche größ­tenteils herausgesucht werden. Diese Daten der Materialien stammen von dem Bundesministerium des Innern, für Bau und Heimat, die ökobaudat.de Seite.
Erkenntnisse der Recherche

Materialverbrauch

- Die Datensammlung der Emissionen aus dem Internet war sehr mühsam und nicht immer direkt angegeben und noch lückenhaft
- Von der Hochschule gab es keine Daten zum Materialverbrauch
- Die Ergebnisse vom Fragebogen konnten den ungefähren Verbrauch durch gezielte Fragen der Studierenden an der Hochschule zeigen
- Es werden in einem Semester auf 456 Studierende ungefähr ca. 2030 Bögen Finnpappe, 1548 Bögen Graupappe, 1117,2 m² Styrodur, 451,22 m² Holz (MDF-Platten), 3917 Holzstäbe und 277,248 m² Plexiglas verbraucht.

Recycling

- Umweltbewusstes Denken ist unter den Studierenden und Lehrenden da.
- Resteschublade würde von ca. 90% der Studierenden angenommen werden. Die meisten Lehrenden würden diese unterstützen, wenn die neuen Modelle nicht darunter leiden.
- Kauf von ressourcenschonenden Materialien bei Kennzeichnung.
- Alte Modelle recyceln, wenn man den neuen Modellen es nicht ansieht.

Modellbauwerkstatt

- Die Datensuche über den Verbrauch der Maschinen im Internet ist sehr aufwendig und es steht nicht immer direkt beschrieben wie viel verbraucht wird. Manchmal muss man die Werte auch noch umrechnen.
- Die Daten der Jade Hochschule sind sehr lückenhaft.

Materialverbrauch:

Auswertung Fragebogen Studierende:

Frage 30: Könnten Sie sich vorstellen mehr mit digitalen Medien zu arbeiten, wie 3D-Modelle, als mit analogen Modellbau?
142 Antworten

- Ja: 35,4%
- Nein: 43,9%
- Zum Teil: 17,6%
Auswertung Fragebogen Lehrende:

Frage 40: Könten Sie sich vorstellen mehr mit digitalen Medien zu arbeiten, wie 3D Modelle, als mit analogem Modellbau?
29 Antworten

Recycling:

Auswertung Fragebogen Studierende:

Frage 28: Würden Sie Ihre alten Materialien in eine Resteschublade geben, damit andere sie weiterverwenden können, um so den Kauf von neuen Materialien einzusparen?
142 Antworten

Frage 38: Würden Sie mehr auf ressourcenschonende Materialien achten, wenn sie gekennzeichnet wären?
141 Antworten
Die grünen 20er: Aspekte der Nachhaltigkeit im Fachbereich Architektur

Frage 29: Für wie wichtig halten Sie das Recycling/ Wiederverwerten von Materialien? (1 - sehr wichtig bis 5 - gar nicht wichtig)
142 Antworten

Auswertung Fragebogen Lehrende:

Frage 39: Was halten Sie von alten Modellen die recycelt werden?
29 Antworten

Frage 41: Würden Sie die Studierenden in Ihrem Kurs darauf aufmerksam machen, mehr ressourcenschonende Materialien zu verwenden?
28 Antworten
Werkstatt:

Verbrauch pro Tag auf die Öffnungszeiten des HA's gerechnet (12,5Std)

Materialverbrauch:

<table>
<thead>
<tr>
<th>Material</th>
<th>Rohdichte</th>
<th>Menge</th>
<th>Verbrauch pro Tag in kWh pro Tag und Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finnpappe</td>
<td>0,85 kg/m³</td>
<td>2030,8 Bögen</td>
<td>170,631,95 kg/m³</td>
</tr>
<tr>
<td>Graupappe</td>
<td>0,945 kg/m³</td>
<td>1548,12 Bögen</td>
<td></td>
</tr>
</tbody>
</table>

Rechnung am Beispiel Finnpappe:

- 1-5 Bögen: 64,9%*456=295*2,5=737,5 (2,5 als Mittelwert)
- 5-10 Bögen: 31,3%*456=142*7,5=1065 (7,5 als Mittelwert)
- 10-15 Bögen: 19,9%*456=8*12,5=108,3 (12,5 als Mittelwert)
- >15 Bögen: 19,9%*456=8*15=120
Zusammenfassung
Die abzuleitenden Maßnahmen daraus sind folgende:

Materialverbrauch
- Ressourcenschonende Materialien
- Verbrauch der Materialien reduzieren
- Digitale Medien nutzen
- Modellbauwerkstatt Materialliste erstellen; Einkauf und Verbrauch
- Asta-Shop mit einbeziehen, um den Ein- und Verkauf zu berücksichtigen

Recycling
- Resteschublade anschaffen für alte Materialien.
- Resteschublade/-wagen für Modellbauwerkstatt.

Modellbauwerkstatt
- Daten über den Energieverbrauch der Werkstatt ermitteln und dokumentieren.
Untergruppe Müll

Forschungsfrage

Datengrundlage

Erkenntnisse der Recherche

Der Fragebogen hat folgende Erkenntnisse aufgezeigt

Ganze 72,6% der Studierenden nutzen bereits Papiermüllreste, zu Beispiel zum Skizzieren.

Die Studierenden des Fachbereichs verwenden größtenteils nicht mehr als 20 Blätter Papier pro Woche.

4% der Studierenden plotten mehr als 15x pro Semester, der Rest weniger. Das Bewusstsein über den Papierverbrauch scheint da zu sein, der „Zwang“ zum Ausdruck für
Die grünen 20er: Aspekte der Nachhaltigkeit im Fachbereich Architektur

Korrekturgespräche und Abgabepläne scheint den Weg zur Reduktion vom Papierverbrauch zu erschweren.

Bei der Befragung der Lehrenden ist bedeutend, dass 12% mehr als 200 Blätter Papier im Semester an Studierende aushändigen. Dieser Wert muss drastisch sinken. Der Anteil der Lehrenden, die digitale Korrekturen und Abgaben strikt verneinen und für unmöglich sehen, ist mit 26,9% hoch. Eine weiterführende Recherche müsste die Ursache dessen aufdecken.

Die Mülltrennung funktioniert aus Erfahrung nicht optimal. Es gibt zwar genügend Mülleimer zur Mülltrennung, aber auch ein zweites Eimersystem, das den Müllproduzenten zur Vermischung des Mülls anregt. Das könnte der Grund sein, dass 0,7% der Studierenden angeben, nicht auf Mülltrennung während ihres Aufenthalts in der Fachhochschule zu achten.

Zusammenfassung

Die alleinige Analyse und Bilanzierung des Fachbereichs Architektur in Hinblick auf den Müll war nicht möglich, nur eine Gesamtbetrachtung hat die Ergebnisse erbringen können.

Abschließend muss erwähnt werden, dass die Bilanzierung nicht abgeschlossen werden konnte.
Die grünen 20er: Aspekte der Nachhaltigkeit im Fachbereich Architektur

Müllaufkommen Jade HS Oldenburg

1. Biomüll: 34,6(4)%
2. Restmüll: 16,1(3)%
3. Plastikmüll: 35,8(2)%
4. Sperrmüll: 12,9(1)%
5. Papiermüll: 0,6(5)%
Zur Vervollständigung sind die Ergebnisse des Fragebogens in Form von Diagrammen nochmals beigefügt.

- STUDIERENDE -

Frage 14: Nutzen Sie Papiermüllreste (z.B. zum Skizzieren)?
146 Antworten

-ja- 72,6%
-nein- 27,4%

Frage 15: Wie viel Papier verwenden Sie pro Woche (A4 und A3-Blätter zusammengefasst)?
146 Antworten

-5-10 Blätter- 46,6%
-10-20 Blätter- 10,3%
-20-50 Blätter- 43,2%

Frage 16: Wie oft plotten Sie im Semester für die FH?
145 Antworten

-nie- 32,4%
-1-5x- 9%
-5-10x- 10-15x- 53,8%
-öfter als 15x-
Die grünen 20er: Aspekte der Nachhaltigkeit im Fachbereich Architektur

Frage 17: Würden Sie die Hochschule bei ihrem Vorhaben Papier einzusparen unterstützen wollen, indem ihr...
146 Antworten

- den Rest vom Plotter verwendet (als Ski...)
- weniger Vorlesungen/Unterlagen ausdruck...
- auf digitale Korrekturen umsteigt
- so weitermacht wie bisher; es muss sich...

Frage 20: Achten Sie auf Mülltrennung während Deines/Ihres Aufenthalts in der FH?
146 Antworten

- ja: 99,3%
- nein: 0,7%

Frage 21: Sind die Mülleimer immer in Sichtweite und in ausreichender Anzahl vorhanden?
146 Antworten

- ja: 82,2%
- nein: 17,8%
Frage 22: Wie viel Papier (inkl. Skripte) händigen Sie im Semester insgesamt/ in allen Kursen an alle Studierende aus?
25 Antworten

Frage 23: Würden Sie die Hochschule bei ihrem Vorhaben Papier einzusparen unterstützen wollen, indem Sie...
25 Antworten

Frage 24: Würden Sie die digitale Abgabe und Korrektur in Ihrem Kurs bevorzugen?
26 Antworten
AG Mobilität
Lisa Baumann, Jan Lucas Jabben, Marc Kaltenbach, Alina Wilhelm, Christa Wilhorst

Forschungsfrage
Das Thema Mobilität mit den Schwerpunkten Verkehrsmittel, Exkursion, Weg zur Hochschule und Verbrauch wird folgend erläutert.

Es wurden verschiedene Fragen aufgeführt, wie zum Beispiel: „Wie kommt man zur Hochschule, Gibt es Möglichkeiten mit anderem Verkehrsmittel zur Hochschule zu kommen als mit dem Pkw?“ aber auch was die Beweggründe sind mit dem ausgesuchten Mittel zu kommen oder wieso man lieber im Winter mit dem Pkw fährt? Aus Gewohnheit? Aus Komfort? Auch Exkursionen an der Hochschule war ein Thema, da viele Exkursionen eher international als regional stattfinden, was daraus resultiert das eine lange Anfahrt besteht und die schnellste Methode das Fliegen ist.

Grundsätzlich bezog sich die Forschung aber auf den Hin- und Rückweg. Wie kommen Lehrende, Mitarbeiter und Studierende zur Hochschule, verbinden Sie damit andere Aktivitäten und kann das Pkw-Aufkommen reduziert werden durch die anleitenden Maßnahmen?

Datengrundlage

Bezüglich Exkursionen (Anzahl pro Semester, Beteiligte, Ort, Unterkunft) haben wir das Sekretariat und die Dozenten kontaktiert, allerdings war die Resonanz eher lückenhaft. Jetziger Stand ist, dass wir Daten über vier Exkursionen haben, die im letzten Jahr gemacht worden sind.

Die CO2 Emissionswerte sind unter anderem durch die Quelle des Umweltbundesamtes ermittelt worden und durch eigene Berechnungen.

Erkenntnisse der Recherche
Von Anfang an war festzustellen, dass zu wenige Informationen bezüglich Mobilität an der Hochschule zu finden waren bzw. auch nicht vorhanden sind.

Durch Erfahrung wusste man das die Fahrradstellplätze sowohl die Parkplätze für Studierende, ab einer gewissen Uhrzeit voll sind. Zudem kommen viele mit dem Pkw
obwohl sie in Oldenburg oder Umzu leben und daher gut mit den ÖPNV oder zu Fuß kommen könnten.

Durch einen Fragebogen konnten wir einige Informationslücken füllen bezüglich Mobilität an der Hochschule. Wir konnten feststellen, dass unter 30% der Befragten mit dem Pkw zur Hochschule kommen und 30% ihr Semestericket mehrmals die Woche nutzen. Für viele ist die Zeitsparnis ein wichtiger Faktor, sodass eher das Auto als der ÖPNV oder das Fahrrad genutzt wird.

Zusammenfassung
Anhand der Umfrage haben wir die notwendigen Daten für die Ermittlung der CO2-Emissionen erhalten.

Wir konnten feststellen, dass durch die Autofahrten im Jahr ca. 853 kg CO2-Emissionen ausgestoßen wurden. Im Gegensatz dazu hat der ÖPNV einen deutlich geringeren CO2-Ausstoß. Durch die Nutzung der Busfahrten wurden ca. 429 kg CO2-Emissionen und durch die Nutzung der Bahnfahrten ca. 371 kg CO2-Emissionen im Jahr ausgestoßen.

Eine Person am Fachbereich Architektur stoßt im Jahr ca. 1,1 Tonnen CO2-Emissionen aus. Somit konnten wir berechnen, dass die Personen am Fachbereich Architektur (503) insgesamt 554,24 Tonnen CO2-Emissionen im Jahr ausstoßen.

Um die CO2-Emissionen so gering wie möglich zu halten wurden einige Maßnahmen zusammengestellt.

Zum einen könnte man bei den Exkursionen mehr auf regionale Verkehrsmittel zurückgreifen und zum anderen nicht zu weite Strecken, bzw. eher Direktflüge in Anspruch nehmen. Zudem kann man überlegen, ob man die Unterkunft an einem Verkehrsknotenpunkt buchen kann, um weniger oder auch gar nicht mit den öffentlichen Verkehrsmittel zu fahren.

Damit der Verkehr auf umweltfreundlichere Verkehrsträger verlagert werden kann, könnte man zum Beispiel die Fahrradstellplätze erweitern, das Parken auf dem Campus kostenpflichtig machen oder für diejenigen, die außerhalb von Oldenburg wohnen, das Parken auf dem Campus kostenlos zur Verfügung stellen.

Des Weiteren kann die nachhaltige Mobilität durch Bildung von Fahrgemeinschaften gefördert werden.

Außerdem kann die Elektromobilität gefördert werden, indem Elektroautos oder auch E-Bikes für die Mitarbeiter und Studierenden zur Verfügung stehen, um kurzfristige Besorgungen zu machen, wie zum Beispiel die Fahrt zu Plan B zum Kauf von Arbeitsmaterialien.