

BIM im Straßenbau

Erste Erfahrungen aus den Pilotprojekten

30.03.2017

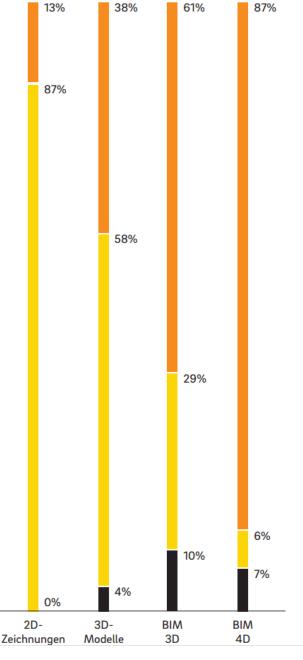
Motivation in der Baubranche

93%

der Akteure der Bauindustrie stimmen zu, dass die Digitalisierung die Gesamtheit der Prozesse beeinflussen wird.

<6%

Weniger als 6% der Bauunternehmen nutzen digitale Planungsinstrumente vollständig.


<u>100%</u>

der Baustoffunternehmen glauben, ihre Digitalisierun potenziale nicht ausgeschöpft zu haben.

Quelle: Roland Berger, Digitalisierung der Bauwirtschaft, 2016

Quelle: Fraunhofer-Institu

Erst digital, dann real bauen

Die wichtigsten projektbezogenen Vorteile durch BIM Technologie

Weniger Fehler	41 %
Bessere Zusammenarbeit	35 %
Aufwertung des Images	32 %
Weniger Nacharbeiten	31 %
Geringere Baukosten	23 %
Bessere Kostenkontrolle	21 %
Kürzere Projektdauer	19 %
Neue Geschäftsmodelle	19 %

www.bimcatalogs.net/www.cadenas.de

BIM Projekte der DEGES

BIM-Pilotprojekte des BMVI mit wissenschaftlicher Begleitung

erste Generation

- 1 Talbrücke Auenbach iZd B107
- 2 Brücke Petersdorfer See iZd A19

zweite Generation

- 3 B87 Abschnitt Eilenburg Mockrena
- 4 Bauwerke iZd B31
- 5 Tunnelkette A44

weitere, bereits gestartete BIM-Projekte

- 6 Talbrücke Schwelmetal iZd A1
- 7 ÖPP-Projekt A10/A24

weitere, geplante BIM-Projekte

- 8 Ersatzneubau der Rudolf-Wissel-Brücke iZd A100
- 9 Ersatzneubau der Westendbrücke iZd A100

10- B178 – A4-Nostitz (BA1.1)

11- ...

Brücke Petersdorfer See inkl. AS Waren

BIM-Ziele:

- Visualisierung des IST-Zustandes
- Modellierung des IST- und SOLL-Zustandes
- Plausibilisierung der Mengenberechnung und damit verbessertes Risikomanagement durch höhere Transparenz in der Planung
- Simulation des Bauablaufes und Plausibilisierung der gewählten Verkehrsführungen
- Ableitung von Kostenganglinien
- Höhere Qualität der Projektinformation durch flexible Visualisierungen aus den 3D-Modellen
- zusätzlich: verbesserter Zugriff auf Bestandsdaten durch Verknüpfung der Modells mit der Bestandsdatenbank

DEGES

BIM-Pilotprojekt Brücke Petersdorfer See

Projektbeschreibung

Gesamtlänge: ca. 1,16 km,

davon Brücke Petersdorfer See: 264 m

Gesamtkosten: 36.5 Mio. €.

davon Brücke Petersdorfer See:

26,5 Mio. €

Anschlussstelle: AS Waren
Verkehrsbelastung: ca. 20.000 Kfz/24h.

in den Spitzenzeiten im Sommer deutlich darüber

Maßnahmer

- Ersatzneubau, Ausführungsphase
- · Modellierung des Bestandes der Petersdorfer Brücke
- · Zusammenführung der Fachplanungen
- · Modellierung der Bauwerke und der Verkehrsanlage

Was wollen wir mit BIM zeigen?

- · Visualisierung IST-Zustand anhand vorhandener terrestrischer Vermessung
- ggf. 3D-Scanning ("Mulitcopterbeflug") der vorhandenen Brücke
- Modellierung Brücke und Erdbau für IST- und SOLL-Zustand
- Plausibilisierung Mengenberechnung mit hinterlegten Kostenansätzen
- · Simulierung Bauzustände mit Darstellung der Terminabhängigkeiten
- · Simulierung Verkehrsführungen während der Bauzeit

Weiterer Projektablauf/Zeitplan

Planfeststellungsbeschluss liegt vor, Bauzeit Sommer 2015 bis Ende 2018

Talbrücke Auenbach iZd B107n

BIM-Ziele

- Verbesserung der Organisation, Kommunikation und Schnittstellenkoordination durch einheitliche, interdisziplinäre, modellorientierte Bearbeitung
- Höhere Termin- und Kostensicherheit durch verbessertes Änderungsmanagement
- Verbessertes Risikomanagement durch höhere Transparenz in der Planung
- Verbesserte Planungsqualität durch integriertes Arbeiten am gemeinsamen 3D-Modell
- Höhere Qualität der Projektinformation durch flexible Visualisierungen aus den 3D-Modellen

DEGES

BIM-Pilotprojekt Südverbund Chemnitz

Projektbeschreibung

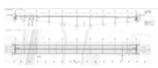
Stützweiten: zwischen 21 m und 35 m

Gesamtlänge Brücke: 290,5 m Nutzbreite Brücke: 21,50 m Brückenfläche: 6245 m²

Querung: DB AG u. Privatbahn

Ouerung: Auerbach

Querung: Auerbach (Gewässer 2. Ordnung)


Gesamtlänge

Straßenabschnitt: ca. 11,3 km

Verkehrsbelastung: ca. 20.000-25.000 Kfz/24 h

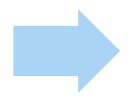
(Prognose 2020)

Maßnahmen

- Neubau, Planungsphase
- Zusammenführung der Fachplanungen
- · Modellierung des Bauwerkes und der Verkehrsanlage

Was wollen wir mit BIM zeigen?

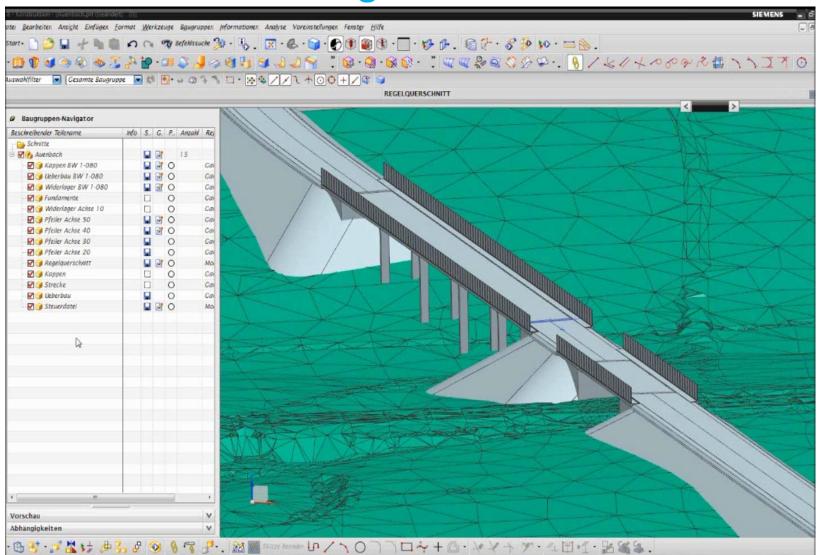
- Zusammenarbeit der Fachplaner Ingenieurbauwerk Strecke Umwelt
- Einheitlicher Datenserver
- Modellierung
- Visualisierung
- Mengenberechnung
- Kostenberechnung


Weiterer Projektablauf/Zeitplan

- · Bauwerksplaner wurde bereits beauftragt
- Erstellung der Bauwerksskizze bis 1. Quartal 2015

Erstellung AIA und BAP

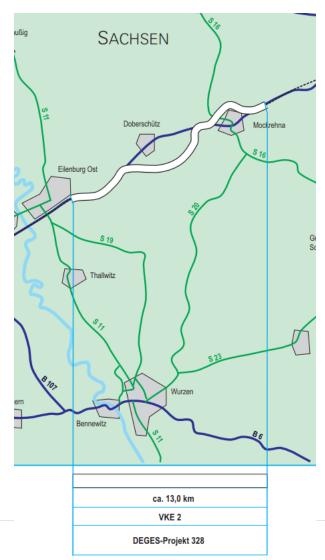
Auftraggeber-Informationsanforderungen (AIA)


- Was will ich als AG wissen?
- Wann will ich es wissen?
- Wie soll es strukturiert sein?
- Welche Datenformate?
- Welcher Detaillierungsgrad?
- ..

BIM-Abwicklungsplan (BAP)

- Wie wird gemeinsam gearbeitet?
- Wie soll die Koordination ablaufen?
- Einrichtung gemeinsamer
 Datenraum
- Spielregeln im Datenraum
- ..

Parametrisierte Planung



B 87 – Abschnitt Eilenburg - Mockrena

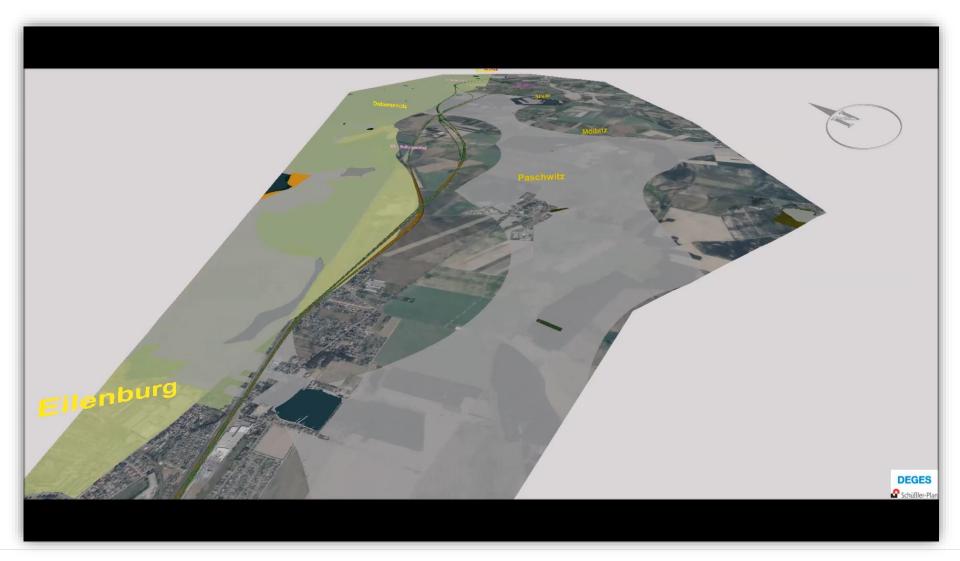
BIM Anwendungsfälle

- Einheitliche Informationsplattform
- 3D Modell Bestand
- 3D Modell Planung
- · Variantendarstellung und -auswahl
- Erstellen von 2D Plänen aus 3D Modell
- Verknüpfung Modell mit Plandokumenten
- 4D Modellerstellung (Bauablauf)
- 5D Modellerstellung (Mengen/Kosten)
- 6D Abschätzung Lebenszykluskosten

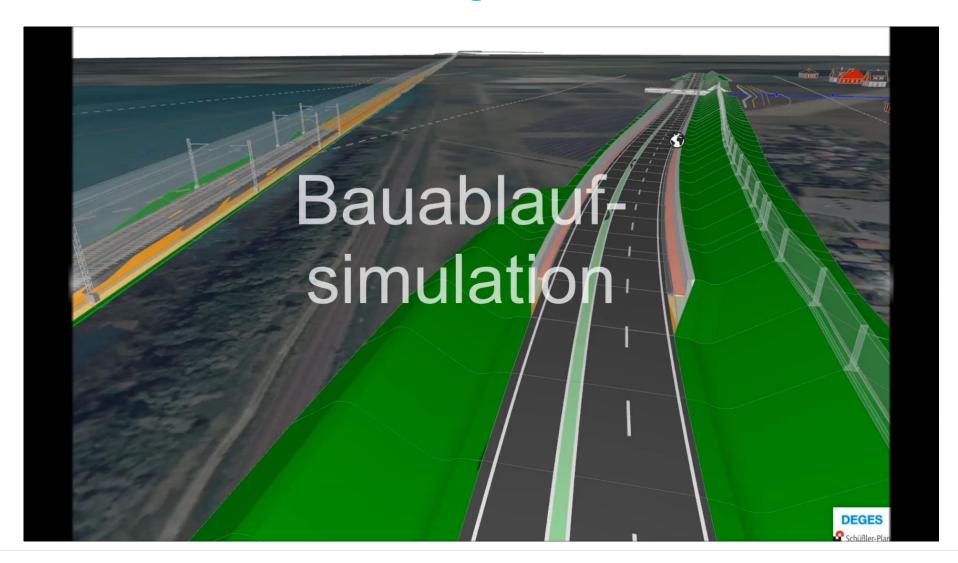
B87 – Abschnitt Eilenburg - Mockrena

DEGES

BIM für 87n


Auftraggeber-Informations-Anforderungen (AIA)

1	Einleit	ung	1
2	Projek	Projektziele	
3	Technische Anforderungen		3
	3.1	Software	3
	3.1.1	Datenaustausch- und Datenübergabeformate	3
	3.1.2	Datenaustauschsystem (CDE)	4
	3.2	Modellierungsvorschriften	4
	3.2.1	Level of Development (LoD)	4
	3.2.2	Genauigkeiten und Toleranzen	5
	3.2.3	Datentrennung und Abschnittseinteilung	5
	3.2.4	Dateinamenskonventionen	6
	3.2.5	Koordinatensystem und Einheiten	6
	3.3	Eingangsdaten des AG	7
	3.4	3D-Modell IST	8
	3.5	3D-Modell PLANUNG	9
	3.6	4D Bauablauf und Termine	12
	3.7	5D-Modell Kostenermittlung	14
	3.8	6D Lebenszyklusbetrachtung	17
4	Management Anforderungen		18
	4.1	Verantwortlichkeiten und Leistungsbilder	18
	4.2	BIM-Projektabwicklungsplan (BAP)	19
	4.3	Kollaborationsprozess gemäß CDE	20
	4.4	Qualitätssicherung	21
	4.4.1	Plausibilitäts- und Kollisionsprüfungen	21
	4.4.2	Datensicherheit	21
	4.5	Normen und Richtlinien	22



B87 – Abschnitt Eilenburg - Mockrena

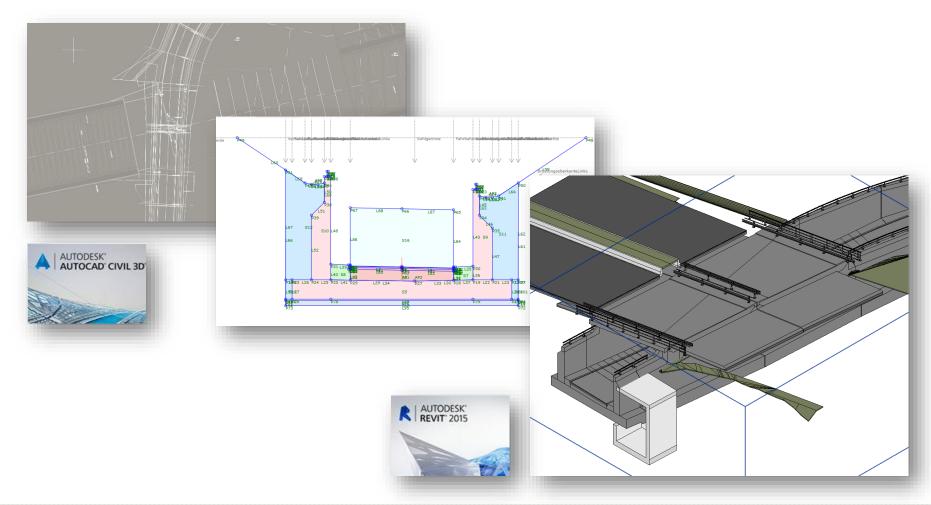
B87 – Abschnitt Eilenburg - Mockrena

Erstellung Vorentwurfs- und Entwurfsplanung, Vorbereitung der Vergabe für drei Bauwerke

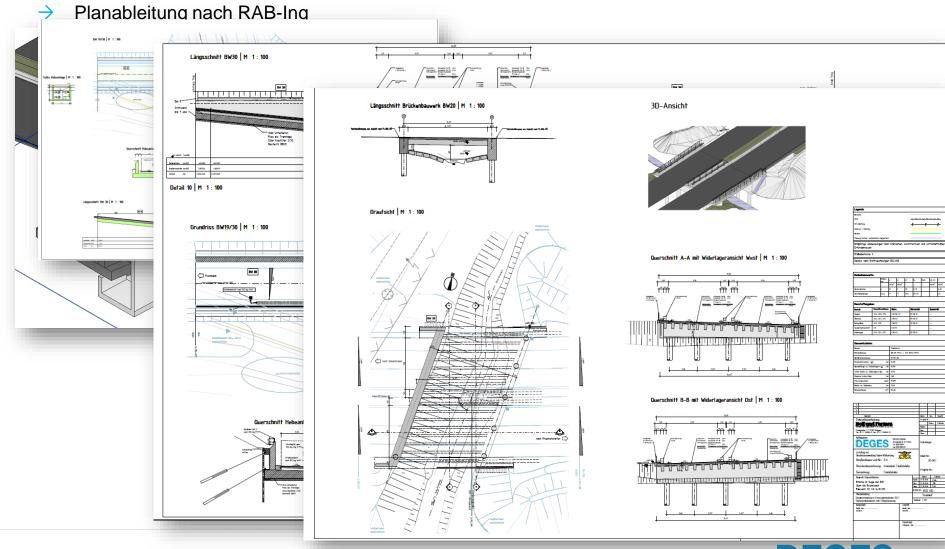
BIM Anwendungsfälle

Planungsprozess

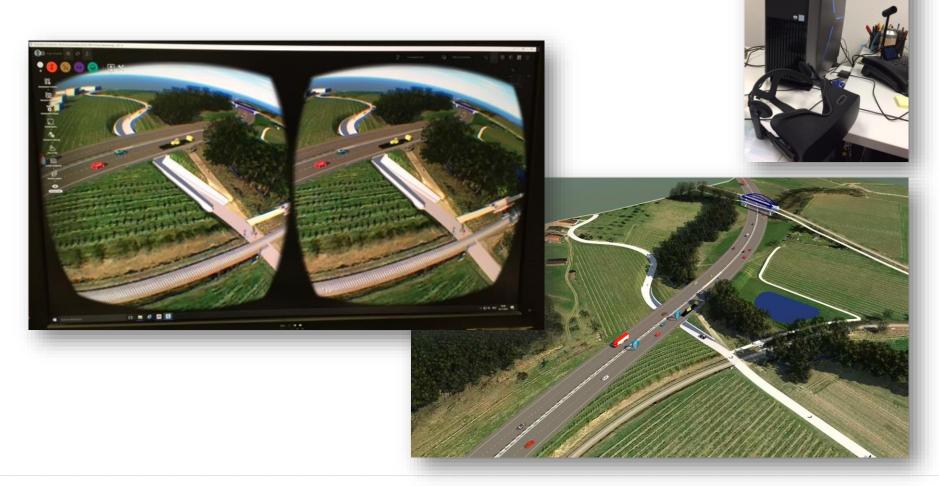
- Erstellung der Vorentwurfs- und Entwurfsplanung
- · Ableitung der erforderlichen Pläne
- Ableitung Hauptmassen für die Ausschreibungsunterlage
- Visualisierung mittels Virtual-Reality

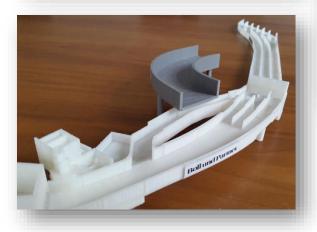

Vergabe- und Bauprozess

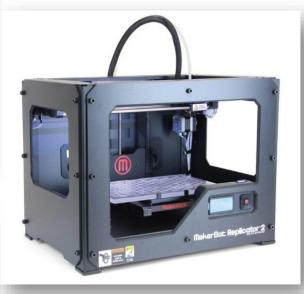
- Modell wird in Vergabephase zur Verfügung gestellt
- · Erstellung der Ausführungsplanung
- Ableitung der erforderlichen Pläne
- Termincontrolling der Baustelle
- Leistungsmeldung der Baustelle
- Abnahme
- Mängelmanagement
- "As-Build-Modell" Übergabe an Straßenbaulastträger



→ Workflow mit AutoCAD Civil 3D




→ Visualisierung mittels BIM



Ausblick 3D-Druck

Bsp.: Hauptsammler Nesenbachkanal im Bereich des Stuttgarter Leuze-Tunnel

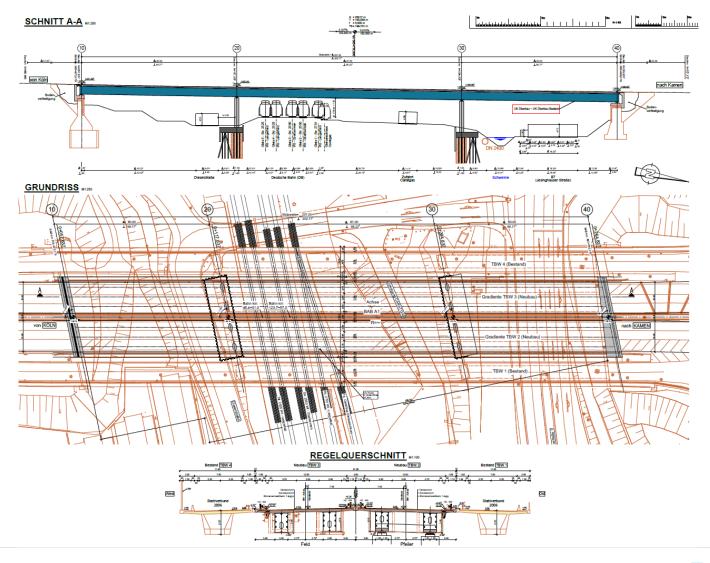
Schwelmetalbrücke iZd A1

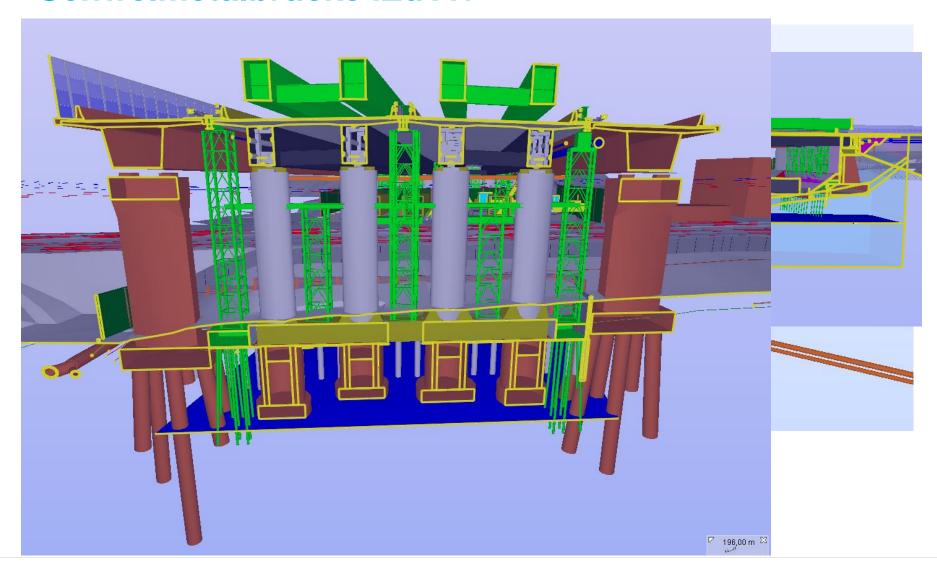
BIM Anwendungsfälle

Planungsprozess

- Erstellung der Vorentwurfs- und Entwurfsplanung
- · Ableitung der erforderlichen Pläne
- Ableitung Hauptmassen für die Ausschreibungsunterlage
- Visualisierung mittels Virtual-Reality

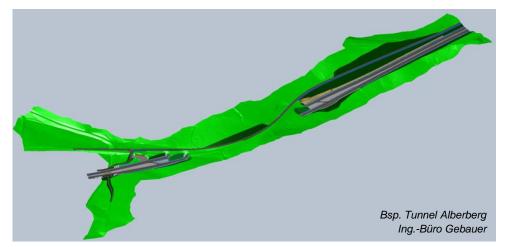
Vergabe- und Bauprozess

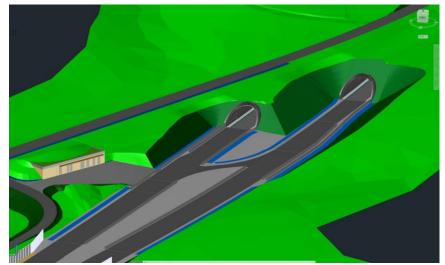

- Modell wird in Vergabephase zur Verfügung gestellt
- Erstellung der Ausführungsplanung
- Ableitung der erforderlichen Pläne
- Termincontrolling der Baustelle
- Leistungsmeldung der Baustelle
- Abnahme
- Mängelmanagement
- "As-Build-Modell" Übergabe an Straßenbaulastträger



Schwelmetalbrücke iZd A1

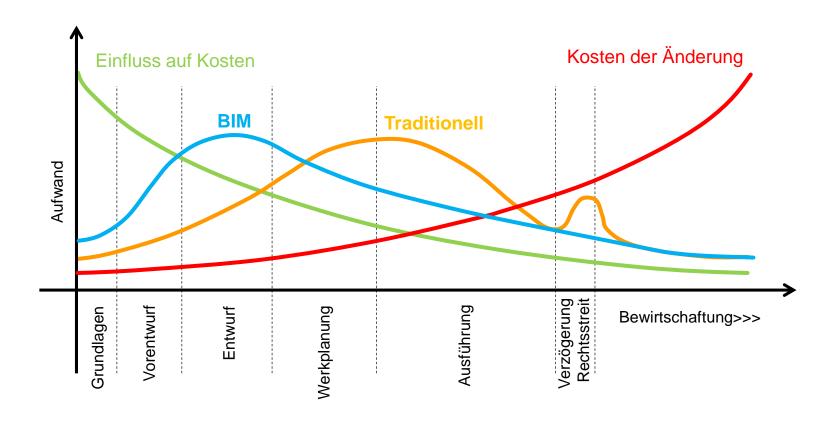
Schwelmetalbrücke iZd A1


Tunnelkette A44

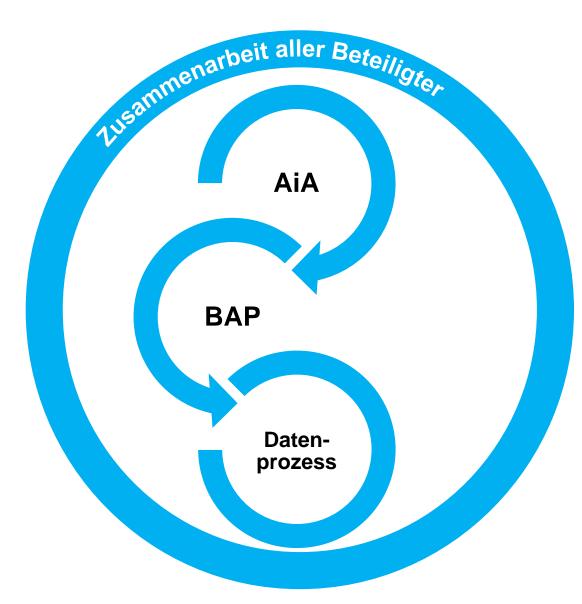

BIM Anwendungsfälle

- Noch mit dem BMVI abzustimmen -

Planungs- und Bauprozess


- Tunnel Bubenrad:
 Modellbasierte 3D-Koordination und Kollisionskontrolle von Rohbau- und Ausbauplanung
- Tunnel Spitzenberg:
 Modellbasierte IST-Aufnahme des
 Ausbruchs, der Spritzbetonschale und der
 Innenschale mittels Laserscan
 Übergabe Bestandsmodell für die
 Gewährleistungsfrist und das Berteiben
- Tunnel Hollstein
 Anwendung von kooperativen
 Vertragsgestaltungen auf Basis eines
 BIM-Modells

FAZIT: BIM Effekte


FAZIT: durchgängiger Datenprozess

Quelle: Stufenplan Digitales Bauen BMVI

FAZIT

DEGES

Deutsche Einheit Fernstraßenplanungs- und -bau GmbH

Zimmerstraße 54 10117 Berlin

Dipl.-Ing. Andreas Irngartinger

Bereichsleiter Projekte in Berlin, Baden-Württemberg und Freistaat Sachsen

Telefon 030 20243 304

Besuchen Sie die DEGES unter www.deges.de