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1. INTRODUCTION

As energy efficiency becomes increasingly important in
everyday life, different energy harvesting systems are being
developed to recycle the energy wasted in the surround-
ing. By doing so, these devices act as independent power
supplies for wireless micro-devices, as an alternative to
batteries. In (Wang et al., 2012), the authors have intro-
duced an energy harvester, which transforms vibrations
into electrical energy, using the piezoelectric effect.

Kudryavtsev et al. (2015) showed that direct application
of one-sided Krylov-subspace-based model order reduction
(MOR) (Bai and Su, 2005; Salimbahrami and Lohmann,
2006; Gugercin et al., 2013) to the harvester model may
lead to unstable reduced models. Therefore, the authors
suggested a new approach called ‘MOR after Schur’ as
they were able to obtain stable reduced models, when a
Schur complement transformation was performed before
MOR. However, they also stated that a Schur complement
transformation increases the number of non-zero entries
in the stiffness matrix and therefore the computational
effort. To tackle this issue Benner et al. (2016) suggest
to undo the Schur complement during the computation of
the projection matrices to retake advantage of the sparse
structure.

In this work, we consider an alternative approach for effi-
cient one-sided reduction of the second-order piezoelectric
energy harvester model, based on the work on first order
systems in (Castagnotto et al., 2015), and establish an
implicit Schur complement transformation.

2. MOR AFTER SCHUR

The system-level representation of the energy harvester
model is shown in Fig. 1. It contains one mechanical input
named displ, three mechanical outputs named centre,
south, north and two electrical ports named el1, el2.

Fig. 1. System-level representation of piezoelectric energy
harvester similar to (Kudryavtsev et al., 2015).

After the spatial discretization of governing partial differ-
ential equations, the piezoelectric model can be described
as follows (Kudryavtsev et al., 2015):
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M,E ∈ R(n+k)×(n+k) are the structural mass and damping
matrix. K11 ∈ Rn×n is the structural stiffness matrix,
K12 ∈ Rn×k, K21 ∈ Rk×n are the piezoelectric coupling
matrices and K22 ∈ Rk×k is the dielectric conductivity
matrix. x1 ∈ Cn and x2 ∈ Ck are parts of the state vector
representing nodal displacement and electrical potentials.
u ∈ Rl is the vector of input load, B1 ∈ Rn×l and
B2 ∈ Rk×l are parts of input matrix B. y ∈ Cm is the
user defined output vector, C1 ∈ Rm×n and C2 ∈ Rm×k

are parts of gathering matrix C.

When a Schur complement transformation is applied be-
fore the MOR process, the electrical domain related state
vector x2 can be eliminated by x2 = K−1

22 (B2u −K21x1),
where given K22 is invertible, and the system is then
transformed into:
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For one-side reduction (W = V ), the projection matrix V
can be obtained from moment matching at the expansion
point ω = 0 (Salimbahrami and Lohmann, 2006). The
reduced model resulting from the projection can then be
written as:{

V TM11V z̈ + V TE11V ż + V TKsV z = V TBsu

y = CsV z + Dsu
(3)

3. MOR AFTER IMPLICIT SCHUR

In (Castagnotto et al., 2015), the authors show that an
equivalent system for the first-order semi-explicit system
can be established by projecting the input matrix onto the
right deflating subspace corresponding to the finite eigen-
values. Using this new formulation, the Schur complement
is implicitly performed during projection, as stated in the
following result.

Theorem 1. The reduced model (3) can be obtained by
reducing the equivalent system (4):
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ẍ2

]
+

[
E11 0

0 0

]
︸ ︷︷ ︸

E

[
ẋ1
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where the Schur complement transformation is only per-

formed on the input matrix B̃ and the feed-through matrix
Ds is added.

The equality of the reduced models to (3) can then easily
be shown by straightforward projection of (4) with its one-
side Krylov subspace projection matrix. Note that (4) and
(1) share the same transfer function, hence preserving the
moment matching property.

4. NUMERICAL RESULTS AND CONCLUSION

Fig. 2 illustrates the full model’s frequency response of
the electrical outputs to the mechanical displacement ex-
citation, which is visibly well matched by the frequency
responses of the reduced models (reduce order r = 30)
from both MOR after normal and implicit Schur. Both
reduced models are obtained using first order one-sided
Arnoldi at the expansion point ω = 0 and with pro-
portional damping (Rudnyi et al., 2004). Furthermore,
Table 1 shows that the computational time of the MOR
process can be significantly reduced (six times quicker)
using implicit Schur, since the structure of the stiffness
Matrix is preserved.
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