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Abstract 
Electrically active implants for regenerative therapies are gaining importance within an aging population of industrial 
nations. Major drawback of the battery-powered implants is the replacement of the drained power supply. Recently, ther-
moelectric generator (TEG), which transforms thermal energy into electrical energy, was developed as a power-support 
for electrically active implants. In this work, a newly designed TEG is incorporated within three-dimensional realistic 
human torso model. Pennes bioheat equation, is used to describe the heat transfer mechanism in tissue. Convection, radi-
ation, and evaporation effects at the skin surface are applied as boundary conditions. Model order reduction (MOR) via 
proper orthogonal decomposition (POD) is applied to this nonlinear thermal human torso model to generate an accurate 
low-dimensional surrogate. Furthermore, for enabling an efficient design optimization of TEG, thermal submodeling 
approach is combined with POD-based MOR. This technology enables to decouple the thermal-domain simulation of 
human tissue model from the coupled-domain simulation of TEG model, while keeping the highest accuracy. In this way, 
an efficient design optimization of the TEG device is enabled. 
 
 
 
1 Introduction 
Aging population is becoming a main concern, especially 
in Europe, which leads to a large demand for developing 
medical implants for regenerative therapies, e.g. regenera-
tion of bone tissue, deep brain stimulations for the treat-
ment of motion disorders, and fixing abnormal heart rates 
with pacemakers. However, with the currently used power-
limited batteries and its risk of chemical side effects, med-
ical engineers are encouraged to develop energy harvesting 
devices for self-powered electrically active implants. 
In last decades, various kinds of energy harvesting technol-
ogies have been developed for medical implants [1]. In this 
work, a thermoelectric generator (TEG) is described, 
which generates electrical power output from the thermal 
gradient inside human via Seebeck effect. In the previous 
research [2], the authors designed a squared-shaped TEG 
integrated in a cubic human tissue model. The temperature 
difference in TEG was calculated numerically by solving 
the Pennes bioheat equation [3]. In [4], a disk-shaped TEG 
was designed and modeled within a simplified cubic hu-
man tissue model. Constant metabolic heat generation was 
considered as the sole heat source and convection was used 
as the heat transfer effect at the skin surface. To speed up 
the simulations of such linear thermal finite element (FE) 
model, Krylov-subspace based model order reduction 
(MOR) [5] method was implemented to generate a compact 
and accurate reduced order model (ROM). Later in [6], the 
authors accounted for the blood perfusion heat generation 

(nonlinear input) within the system-level simulations based 
on ROM of TEG. Recently, the authors in [7] managed to 
incorporate the TEG within more realistic, but still linear-
ized, human forearm model. A new linearization strategy 
was introduced to solve the nonlinearity caused by the tem-
perature-dependent blood perfusion effect. Furthermore, a 
combination of Krylov-subspace based MOR and submod-
eling techniques was introduced. 
In this work, we further incorporate the TEG within a real-
istic human torso model adapted from [8]. Apart from 
blood perfusion and convection effects, radiation and evap-
oration effects at the skin surface are considered. Instead of 
using conventional Krylov-subspace based MOR method, 
the proper orthogonal decomposition (POD) based MOR 
[9] is applied. It is further combined with the thermal sub-
modeling technique for enabling efficient design optimiza-
tion of TEG. 
In Section 2, the details of the TEG and human torso model 
are presented. In Section 3, the combination of POD-based 
MOR and submodeling methods are introduced. The effi-
ciency and accuracy of this approach will be observed 
through the achieved results in Section 4. The conclusion 
of this work and the outlook for future topics are given in 
Section 5. 



2 Case Study 

2.1 Thermoelectric Generator 
The TEG is modelled based on a commercially available 
device. An array of 16×16 p-type and n-type bismuth tel-
luride thermocouples (0.8×0.8×2.27 mm3) are placed be-
tween two ceramic plates (each 24.6×24.6×0.565 mm3) 
(see Figure 1). It is surrounded by a disc-shape Teflon 
housing (height 3.4 mm). The material properties of each 
part are shown in Table 1. 

 
Figure 1  Assembling setup of the TEG 
 

TEG parts Material 
Density 
(kg/m3) 

Specific 
heat 

(J/kg/K) 

Thermal 
conductivity 

(W/m/K) 

Housing Teflon 8933 385 0.25 

Plates Al2O3 3720 880 25 

Thermopile 
(P-type) 

Bi2Te3 7700 90 1.58~1.52† 

Thermooile 
(N-type) 

Bi2Te3 7700 90 1.62~1.58† 

Table 1  Material properties in TEG 
†Varies in temperature between 25℃ to 37.5℃ 
 
After spatial discretization via FE method, the model con-
tains 127,307 nonlinear ordinary differential equations 
(ODEs) in total. 

2.2 Human Torso Model 
The realistic human torso model is implemented in AN-
SYS® Workbench (2019.R1) based on segmented mag-
netic resonance imaging data from [8] (see Figure 2). Re-
alistic human tissue material properties were assigned to 
various tissue sections. Table 2 mainly shows the material 
properties of muscle, fat, skin, and blood tissues. More de-
tails and other material properties used, can be found in 
[10]. 

 
Figure 2 Torso model contains solid organs, skeleton, 
main vessels, muscle, fat, and skin layers 
 

As suggested in [2] and [4], the TEG was positioned in the 
fat layer of left-upper-side chest region (see Figure 3), 
where the maximum temperature gradient was observed. 

 
Figure 3  TEG incorporated within the realistic human 
tissue model in the chest region 
 

Tissue 
𝝆𝝆 

(kg/m3) 
𝒄𝒄 

(J/kg/K) 
𝝎𝝎 

(1/s) 
𝑸𝑸𝒎𝒎 

(W/ m3) 

Muscle 1090.4 3421.2 0.000337 498.52 

Fat 911 2348.33 0.000301 279.8 

Skin 1109 3390.5 0.000906 841.57 

Blood 1049.75 3617 / / 

Table 2  Muscle, fat, skin and blood tissue properties 
 
The internal heat transfer in human tissue is described by 
the Pennes bioheat equation: 

∇(κ∇T) + ρbcbω�Ta − T(r, t)��������������
Qb

+ Qm = ρc
∂T
∂t  (1) 

where ρ,c and κ are the density, specific heat capacity and 
thermal conductivity properties of different tissues. T is the 
unknown temperature state vector and Ta  is the arterial 
blood temperature, which is set as constant at 37℃. Qb and 
Qm are the blood perfusion and metabolic heat generation 
rates applied in muscle, fat, and skin layers, where ρb, cb 
describe the thermal properties of blood, and ω is a meas-
ure of perfusion in different tissues. The external heat 
transfer effects at the skin surface balance the heat gener-
ated inside [11]: 

qsk = hc(Tskin − Tamb)�����������
qconv

+ σϵ�Tskin4 − Tamb4 ������������
qrad

 

+ he(Pskin − ϕPsa)�����������
qeva

 (2) 

where qconv, qrad, and qeva are the convection, radiation 
and evaporation heat fluxes normal to the skin surface. 
Tamb  is the environmental temperature and Tskin  is the 
temperature at the skin surface. The details of the variables 
in equation (2) are given in [12]. After spatial discretiza-
tion, the model contains 1,045,949 degrees of freedom and 
can be represented by a nonlinear-input ODE system as fol-
lows: 

∑N �
E ⋅ Ṫ(t) + A ⋅ T(t) = B ⋅ u(T(t))�������

F(T(t))
y(t) = C ⋅ T(t)

 (3) 

where E, A ∈ RN×N are the global heat capacity and heat 
conductivity matrix. F(T(t)) captures the nonlinearity of 
the system. C ∈ Rq×N  is the user defined output matrix 
with q outputs and y(t) ∈ Rq is the output vector. 



3 Combination of POD-based MOR 
and Thermal Submodeling  

Due to the large-size of system (3), it is essential to speed 
up the simulations of thermal human torso model. Different 
from the method used in [7], which performs Krylov-sub-
space based MOR on a linearized thermal human torso 
model, in this work, the POD-based MOR algorithm was 
applied to generate a compact but highly accurate surrogate 
of nonlinear-input system (3). Instead of using orthonor-
malized Krylov-subspace, another reduced basis (RB) is 
used as follows: 

T(t) ≈ ϕpod ⋅ z(t) (4) 

where z(t) ∈ Rr , r ≪ N, is the reduced state vector and 
ϕpod is the RB obtained through POD method. Based on 
the simulation results of the full-scale model, a snapshot 
matrix S ∈ RN×n is constructed by compiling the sampled 
solution at n time steps: 

S = [T(t1), T(t2),⋯ , T(tn)] (5) 

where T(tn) ∈ RN represents the temperature distribution 
results at specific nth time step. To compute the optimal 
RB ϕpod , a singular value decomposition (SVD) is per-
formed on that snapshot matrix S: 

S = UΣVT (6) 

where the columns in U = [ϕ1,ϕ2,⋯ ,ϕN] ∈ RN×N  and 
V = [ξ1, ξ2,⋯ , ξn] ∈ Rn×n  are left-singular and right-sin-
gular vectors of S, respectively. Non-equal vectors ϕi, i ∈
[1, N] in U are mutually orthonormal. Σ ∈ RN×n  is a rec-
tangular diagonal matrix with non-negative singular values 
σi, i ∈ [1, n], which are sorted in descending order at diag-
onal as σ1 ≥ σ2 ≥ ⋯ ≥ σn . The first r  leading singular 
vectors in U are truncated for constructing the optimal RB 
space: 

ϕpod = span{ϕ1,ϕ2,⋯ ,ϕr} ∈ RN×r (7) 

where the choice of the dimension r is decided by evaluat-
ing the relative importance of POD modes through the rel-
ative energy equation: 

Ei =
σi2

∑ σi2n
i=1

, iϵ[1, n] (8) 

The sum of the energy in n modes is unity. Usually, the 
first r modes in U captures 99% of the total energy and pre-
serves the main dynamics of the original system. In con-
junction with the Galerkin projection, the full-scale system 
(3) is projected onto the RB: 

∑r �
Er ⋅ ż(t) + Ar ⋅ z(t) = N(z(t))

y(t) = Cr ⋅ z(t)  (9) 

where Er = ϕpod
T Eϕpod , Ar = ϕpod

T Aϕpod , Cr = Cϕpod 
are the reduced matrices. The nonlinear-input is reduced as 
N�z(t)� = ϕpod

T F(ϕpodz(t)). Then, the system (9) is dis-
cretized in time and solved with forward Euler method. 
In addition, for providing an efficient TEG design optimi-
zation method, thermal submodeling technique, available 
in ANSYS® Workbench, is combined with POD-based 

MOR. Firstly, a representative TEG model, where the 
structure of thermocouple legs is replaced by a simple 
block structure, is embedded into the human torso model 
(see Figure 4). The equivalent material properties of the 
block structure are chosen based on the experimental data 
from [13]. This model is reduced by POD-based MOR and 
solved. Its result T(t) (recovered through equation (4)) is 
used as the boundary condition for the detailed TEG sub-
model (see Figure 5). In this way, the design alterations of 
the TEG submodel can be computed efficiently, that is 
without repeating simulations of the global human torso 
model. 

 
Figure 4  Human torso model incorporating the repre-
sentative TEG with block structure 

 
Figure 5  Human torso incorporating detailed TEG sub-
model  

4 Numerical Simulation Results 
To obtain the temperature distribution of the model from 
Figure 4, we begin with a steady state simulation with heat 
transfer coefficient of 3.1 W/m2K and ambient temperature 
of 25 ℃. Based on this initial state, a transient simulation 
is performed with a changed heat transfer coefficient of 
5.48 W/m2K. Then POD-based MOR is applied and tem-
perature results at three selected output nodes in muscle, 
fat, and skin layers are compared (see Figure 7). The max-
imum relative error between the full and reduced model is 
0.035% in the muscle layer. This indicates that the ROM is 
accurate enough for re-projecting the reduced temperature 
state vector back to the full size. It can be further used as 
temperature boundary conditions for the submodel. 
Finally, the accuracy of the temperature results obtained 
through submodeling technique was verified (see Figure 
8). It was observed that the maximum relative difference 
between global and submodel simulations was 0.11%. 



 
Figure 7  Temperature results from full (921,336 DoF) vs. 
reduced (3 DoF) models 

 
Figure 8 Comparison of temperature results on detailed 
TEG via global model and submodel simulations 
 
Through the combination of POD-based MOR and sub-
modeling techniques, the computational time was 6.89 
times faster comparing to the full-scale FE simulation (see 
Table 3). The generation of the snapshot matrix in POD-
based MOR was considered as the offline effort. 

Computational 
time 

Detailed TEG as 
submodel 

Detailed TEG in 
global model 

POD-based MOR 54.6 s 
/ 

Sim. in submodel 187.73 s 

Total 242.33 s 1669.56 s 

Table 3  Computational times comparison 
(On HPC with 16× Intel® Xeon® CPU E5-2687W v4 @ 
3.00GHz, RAM 324 GB, VGA NVIDIA Tesla M10) 

5 Conclusion and Outlook 
In this paper, we introduced a methodology for efficient 
design optimization of TEG, which combines POD-based 
MOR and thermal submodeling techniques. The numerical 
simulation results shown in Section 4 proved that the accu-
racy can be preserved within the submodel with much less 
computational effort. 

In the future, parametric model order reduction will be ap-
plied to generate parameter-independent reduced order 
models of TEG. Furthermore, system-level simulation, 
which incorporates power-management circuitry, will be 
performed based on the reduced TEG model. 
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