Modeling and Simulation of Proton Exchange Membrane Water Electrolyzer and Application of Model Order Reduction on Its Power Rails

Chu Xu, Dennis Hohlfeld, Tamara Bechtold

Introduction

The Proton Exchange Membrane Water Electrolyzer (PEMWE) is steadily gaining recognition as a paramount technology for pollution-free hydrogen production. A detailed understanding and representation of its internal physical processes are crucial for optimizing its hydrogen production efficiency. In this research, we present a comprehensive three-dimensional single-phase model of the PEMWE based on computational fluid dynamics (CFD) utilizing the finite volume method (FVM).

The PEMWE has symmetric structure, which comprises bipolar plate, channel, gas diffusion layer, and catalyst layer in both sides, as shown in Figure 1. The oxygen is generated on the anode side as:

\[\text{O}_2 \rightarrow 2 \text{H}^+ + 2e^- \]

and hydrogen is generated on cathode side:

\[2\text{H}_2\text{O} \rightarrow \text{O}_2 + 2\text{H}_2 \]

where \(\text{O}_2 \) is the transfer coefficient, \(F \) is the Faraday constant, \(R \) is the universal gas constant, \(T \) is the temperature. \(\eta \) is the activation overpotential given by

\[\eta_a = \phi_a - \phi_m - E_{eq} \]

\[\eta_c = \phi_c - \phi_m \]

where \(\phi_a \) solid phase potential, \(\phi_m \) is the membrane phase potential, and \(E_{eq} \) is the equilibrium voltage.

The anodic and cathodic exchange current densities are written as

\[i_a = i^{ref}_a \left(\frac{1 - e^{-\eta_a R T}}{R T} \right) \]

\[i_c = i^{ref}_c \left(\frac{1 - e^{-\eta_c R T}}{R T} \right) \]

where \(i^{ref} \) is the reference current density, \(E_{eq} \) is activation energy, and \(T_{ref} \) is the reference temperature.

Model Description

The single-phase PEMWE is modeled in ANSYS Fluent. Its computational domain is depicted in Figure 2. A positive potential is applied to the outer surface of the anode bipolar plate, while the potential of the cathode bipolar plate is fixed to 0.

\[\eta_a = \phi_a - \phi_m - \phi_m \]

where \(\phi_a \) solid phase potential, \(\phi_m \) is the membrane phase potential, and \(E_{eq} \) is the equilibrium voltage.

A major challenge with intricate models is the computational demand. Both models will be computed multiple times and exchange data in an iterative process until the results meet the convergence criteria. To overcome this, we have applied projected-based model order reduction (MOR) to the power rails, resulting in the streamlined, reduced-order models (ROM) extracted from the full Finite Element Method (FEM) models. This approach has significantly cut down on computation time, enabling faster, and potentially real-time, system-level simulations.

Power Rails and the Application of Model Order Reduction

A pivotal aspect of a holistic system-level simulation of a complete hydrogen generation plant is the power rails, which are specially designed for the electrolyzer's power transmission. We have modeled these power rails with meticulous attention to both electromagnetic and thermal effects. Through solving the electromagnetic field of the power rails, we obtain the ohmic loss distributions, which will be the inputs for the thermal model. The temperature distribution will be computed in the thermal model and provides feedback to the EM model accordingly. Since the electrical resistance of the power rails varies with temperature and causes to different ohmic losses. The implementation of two-way coupling enables us to accurately determine the temperature-dependent power loss.

The developed model exhibits commendable agreement with experimental findings as shown in Figure 5, underlining its accuracy and potential utility in real-world applications.

References

Tamara.Bechtold@uni-rostock.de

Institute of Electronic Appliances and Circuits | Chair for Micro- and Nanotechnology of Electronic Systems | University of Rostock, Albert-Einstein-Str. 2 | 18059 Rostock, Germany