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Abstract
Thermoelectric generators are investigated as

supplementary power sources for electrically active
implants. We analyze a thermal model of human
tissue with an implanted generator. The impact of
convection at the skin surface is studied by applying
parametric model order reduction with film coefficient
and ambient temperature as parameters. We propose to
use our approach for efficient parameter studies and the
co-simulation of generator and electric circuitry.

1. Introduction
According to [1], by 2060 one out of three persons in

Germany will be over 65 years old. Medical technology,
which improves the efficiency of necessary medical treat-
ments, is therefore gaining more concern. The need for
developing implantable medical devices for regeneration
of bone and cartilage, deep brain simulation or cardiac
pacing is rapidly increasing. As those devices are battery-
powered, surgery is required to replace the drained energy
storage. The related risk and cost of repeated surgery
imposes a considerable drawback. We therefore propose
to develop self-powered medical implants, which tap into
the energy available from the human body itself.

Energy-harvesting technology has shown to bear the
potential to increase the operational time of implantable
devices [2]–[5]. By harvesting mechanical and thermal
energy around or inside the human body, electrical power
can be supplied to medical devices. This is achieved
by micro-structured piezoelectric or thermoelectric energy
generators (TEG) [6], [7].

Implanted TEGs utilize the Seebeck effect to harvest on
temperature gradients inside the human body in order to
provide electrical power for electrically active implants
[8]–[10]. The amount of power delivered, depends on
temperature gradients inside the human body. Heat losses
by convection, radiation, evaporation (sweating) and con-
duction determine the heat exchange between the human
body and its environment [11]. In this work, we consider
only convection at the skin surface and evaluate the impact
of the film coefficient and the ambient temperature on the
temperature gradient.

To design and optimize such devices, numerical simula-
tion is employed, as it saves fabrication cost and supports
device optimization. Using the finite element method

(FEM) the governing partial differential equation (PDE)
is spatially discretized, resulting in a system of ordinary
differential equations (ODEs). The large dimension of
such a numerical model leads to high computational costs
for transient simulations. Furthermore, parameter studies
multiply the computational effort for the static simulation
as well.

Mathematical model order reduction (MOR) generates
highly accurate and compact reduced order models [12]–
[14]. This technique has already been successfully applied
to linear thermal models of various microsystems and
has proven its robustness [15]. Parametric model order
reduction (pMOR) by multi-variate moment-matching as
suggested in [16]–[20] is able to provide parametrized
reduced order models. This has been successfully demon-
strated for various micromachined case studies [21].

In this work, we apply the pMOR methodology for
efficient parameter studies, that is to determine how the
environmental conditions influence the temperature distri-
bution across the human TEG.

In Section 2 we present the model of the TEG sur-
rounded by human tissue. In Section 3, we describe
the parametric MOR process for generating a compact
model, which contains the film coefficient and the ambient
temperature as parameters. In Section 4 the accuracy of
the parameterized reduced order model is verified and
its applicability for parameter studies is demonstrated.
The impact of heat convection at the skin surface on
the temperature difference across the TEG is investigated.
Finally, a co-simulation setup of the compact TEG model
together with an electronic circuit is presented. Section 5
summarizes this work and gives an outlook to further
research.

2. Case Study: Human TEG Model
In this section, a model of a miniaturized thermoelec-

tric generator surrounded by human tissue is presented.
Figure 1 illustrates the envisioned electrically active im-
plant consisting of a TEG, energy buffer and application-
specific integrated circuit (ASIC). The implant is posi-
tioned in the fat layer, in which the maximum temperature
gradient has been calculated [22].

The TEG (see Figure 2) consists of two metallic discs
(diameter 13 mm, height 0.9 mm) and an array of 9×9
thermocouple legs in between (κth = 1,35 W/m/K, α =



 

Figure 1: Schematic of a subcutaneous TEG-powered
electrically active implant inside the fat tissue.

±200 µV/K, ρel = 10 µΩ m). It is enclosed by a poly-
mer housing with low thermal conductivity (κth = 0,25
W/m/K). A leg cross-section of 275×275 µm2 results in
maximum power delivery, as demonstrated in [22].

 

Figure 2: TEG model with cylindrical housing (left) and
thermocouple legs array inside (right).

TEG employs the Seebeck effect to transform thermal
into electrical energy. The voltage generated is given by:

Vout = n ·∆T (α1−α2) (1)

where Vout is the output voltage, ∆T is the temperature
difference accros the thermocouple legs, n is the number
of thermocouples and α1,2 are the Seebeck coefficients of
the thermocouple legs.

A simplified model of human tissue (see Figure 3),
which is composed of muscle, fat and skin layer has been
chosen for this case study. Thermal material properties of
each tissue type are given in Table 1.

Table 1: Thermal material properties of tissue [23].

muscle fat skin

Density (kg/m3) 1090.4 911 1109
Specific heat capacity (J/kg/K) 3421.2 2348.3 3390.5
Thermal conductivity (W/m/K) 0.4949 0.2115 0.3722

Heat transfer in human tissue is described by the
Pennes bioheat equation [24]. This model considers heat

 

Figure 3: Human tissue model composed of muscle, fat
and skin layer (as proposed in [8]).

conduction, metabolic heat generation and temperature-
dependent blood perfusion. Currently, we neglect the
effect of perfusion and assume a constant metabolic heat
generation rate across the muscle tissue. The governing
heat-transfer partial differential equation reads:

∇(κ∇T )+Q−ρc
∂T
∂t

= 0 (2)

where T is the temperature distribution of interest, ρ, c
and κ are the density, specific heat capacity and thermal
conductivity properties of each tissue layer specified in
Table 1 and Q = 800 W/m3 is a constant metabolic
heat generation across the muscle tissue. The body core
temperature T = 37◦C is accounted for through a Dirichlet
boundary condition at the backside of the muscle layer.
The heat removal from the skin surface is modeled by
convection boundary condition as:

q⊥ = h · (T (t)−Tamb) (3)

where q⊥ is the heat flux normal to the boundary skin
surface, Tamb is the ambient temperature and h is the
film coefficient in W/m2/K, a parameter dependent on the
surface geometry and air velocity. In [25], the following
values are given:{

h = 3.1 f or 0 < vair < 0.2
h = 8.3vair

0.6 f or 0.2 < vair < 4.0
(4)

The numerical analysis of the TEG implanted thermal
tissue model is carried out by means of FEM. Spatial
discretization of the governing PDE (2) with boundary
condition (3) leads to a large-scale ODE system of the
form:

Σn

{
E · Ṫ (t) = A ·T (t)+B ·u
y(t) =C ·T (t)

(5)



where T ∈ Rn×1 is the vector of unknown temperatures,
E,A ∈ Rn×n are the global heat capacity and heat conduc-
tivity matrices respectively, B ∈ Rn×m is the input matrix
and C ∈ Rp×n is the output matrix with m and p being the
number of inputs and user defined outputs respectively.
Here the input vector u contains the the heat generation
defined in the muscle tissue, whereas the selected outputs
are the temperatures at the top and bottom surfaces of the
TEG thermocouple legs.

3. Parametric Model Order Reduction

Due to large dimension of (5) (n = 108292), the tran-
sient simulation is time-consuming. To obtain a compact
model, mathematical model order reduction can be used.
It is based on an assumption that there exists a low-
dimensional subspace V ∈ Rn×q with q << n, that accu-
rately enough captures the dynamics of the state vector
T (t):

T (t)≈V · x(t) (6)

In the Krylov-subspace based moment matching approach
[13], [14], the subspace V is found in such a way that the
moments (Taylor coefficients) of the transfer function of
(5), defined as:

H(s) =C(sE−A)−1B (7)

are preserved with respect to the Laplace variable s around
some apriori chosen value s0. For example, the Taylor
expansion of (7) around s0 = 0 reads:

H(s) = H(0)+
∂H
∂s

(0) · s+ 1
2!

∂2H
∂s2 (0) · s2 + ...

=
∞

∑
j=0
−C(A−1E) jA−1B︸ ︷︷ ︸

mi, i=1,...,q

s j (8)

The expansion coefficients mi are called moments of the
transfer function. When V is defined as an orthonormal
bases of the following Krylov subspace:

colspan{V}= Kq{A−1E,A−1B}
= {A−1B,(A−1E)A−1B, ...,(A−1E)qA−1B} (9)

one obtains a low-dimensional model of order q by
projecting (5) onto V as follows:

Σq


V T EV︸ ︷︷ ︸

Er

ẋ =V T AV︸ ︷︷ ︸
Ar

x+V T B︸︷︷︸
Br

u

y = CV︸︷︷︸
Cr

x
(10)

The transfer function of (10) is defined as:

Hr(s) =Cr(sEr−Ar)
−1Br (11)

and its Taylor expansion around s0 = 0 reads:

Hr(s) = Hr(0)+
∂Hr

∂s
(0) · s+ 1

2!
∂2Hr

∂s2 (0) · s2 + ...

=
∞

∑
j=0
−Cr(A−1

r Er)
jA−1

r Br︸ ︷︷ ︸
m(r)

i , i=1,...,q

s j (12)

The property of the Krylov subspace (9) is such that
the first q moments mi and m(r)

i of (8) and (12) are
matched and hence, the reduced model is an accurate
approximation of the full-scale one. Unfortunately, this
approach does not preserve the parameters, which might
arise in (5) due to geometry-parametrization or boundary
conditions.

For example, in our study of human TEG we seek to
investigate the environmental influence upon the temper-
ature difference across the thermocouple legs, by varying
the film coefficient and ambient temperature. The param-
eterized model reads:

Σn


E · Ṫ (t) = (A0 +h ·A1)︸ ︷︷ ︸

=:A(h)

·T (t)+B ·

[
Q

h ·Tamb

]
︸ ︷︷ ︸

=:u

y(t) =C ·T (t)

(13)

The goal of parametric model oder reduction (pMOR)
methods is to construct the parameter-independent pro-
jection subspace Ṽ , which can be done by treating the
transfer function (7) as a function of two variables (s and
h):

H̃(s,h) =C{sE− (A0 +h ·A1)}−1B (14)

The Taylor expansion of (14) around, e.g. (s0 = 0,h0 =
0) reads:

H̃(s,h) = H̃(0,0) +
∂H̃
∂s

(0,0) · s+

∂H̃
∂h

(0,0) ·h+ 1
2!

∂2H̃
∂s2 (0,0) · s2+

∂2H̃
∂s∂h

(0,0) · s ·h+ ∂2H̃
∂h∂s

(0,0) · s ·h+

1
2!

∂2H̃
∂h2 (0,0) ·h2 + ... (15)

In [16], it was proposed to neglect mixed moments and
construct the projection subspace V in such a way, to
match only the moments with respect to s and h separately.
In [26] we demonstrated that this indeed works well if
the parameters are not physically correlated, as it is the
case for the Laplace variable and the film coefficient.
Therefore, two disjoint Krylov subspaces are computed
where one parameter is kept constant, while the Krylov
subspace is generated for another (variable) parameter and



vice versa; for example, derivatives with respect to s at
s= s0 are computed by fixing h= h0. Projection subspaces
are generated as:

colspan{Vs}=Kq1{(A(h0)− s0E)−1E,(A(h0)−s0E)−1B}
(16)

colspan{Vh}=Kq2{(A(h0)−s0E)−1A1,(A(h0)−s0E)−1B}
(17)

Orthonormal bases Vs and Vh are finally merged into a
single projection matrix Ṽ :

colspan{Ṽ}= colspan{Vs,Vh} (18)

Boundary condition independent ROM now reads:

Σq


Ṽ T EṼ︸ ︷︷ ︸

Er

ẋ = Ṽ T A0Ṽ︸ ︷︷ ︸
A0r

x+hṼ T A1Ṽ︸ ︷︷ ︸
A1r

x+Ṽ T B︸︷︷︸
Br

·

[
Q

h ·Tamb

]
︸ ︷︷ ︸

=:u

y = CṼ︸︷︷︸
Cr

x

(19)
where Er,A0r,A1r ∈ R(q1+q2)×(q1+q2), Br ∈ R(q1+q2)×m and
Cr ∈ Rp×(q1+q2). The transfer function of (19) is defined
as:

H̃r(s,h) =Cr{sEr− (A0r +h ·A1r)}−1Br (20)

and its Taylor expansion around e. g. (s0 = 0,h0 = 0) reads:

H̃r(s,h) = H̃r(0,0) +
∂H̃r

∂s
(0,0) · s+

∂H̃r

∂h
(0,0) ·h+ 1

2!
∂2H̃r

∂s2 (0,0) · s2+

∂2H̃r

∂s∂h
(0,0) · s ·h+ ∂2H̃r

∂h∂s
(0,0) · s ·h+

1
2!

∂2H̃r

∂h2 (0,0) ·h2 + ... (21)

Property of the Krylov subspaces (16) and (17) is
such that only the chosen numbers q1 respectively q2 of
encirceled terms in (15) and (21) are matched. The allover
dimension of the reduced system (19) is q1 +q2.

As to the difference from [26], we are here interested
in studying the static temperature distribution, that is
temperature difference across the thermocouple legs, for
different environmental conditions (different h and Tamb),
we might neglect the time-dependent terms in models (13)
and (19) and set Ṽ = Vh, while previously setting s0 = 0
in (17). This speeds up the time for the construction of
reduced order model, as only a single Krylov subspace
(17) needs to be constructed.

4. Simulation Results

In this section, the accuracy of the parameterized re-
duced order model is verified and a setup for the system-
level simulation is presented.

We performed stationary analyses of the full model
(13) with film coefficient and ambient temperature as
parameters in range defined in Table 2, that is for 36
different parameter combinations.

Table 2: Parameter values of film coefficient and ambient
temperature

vair (m/s) <0.2 0.8 1.4 2.6 3.2 3.8

h (W/m2/K) 3.1 7.26 10.157 14.725 16.679 18.491
Tamb (K) 10 14 18 22 26 30

Different environmental conditions affect the tempera-
ture distribution inside the tissue and hence, the temper-
ature difference across the TEG. Figure 4 illustrates this
impact.

 

Figure 4: Temperature difference in [◦C] across the TEG
as a function of film coefficient and ambient temperature.

As expected, a combination of high film coefficient of
h = 18.49 W/m2/K and a low ambient temperature of
Tamb = 10 ◦C leads to a maximum temperature difference
of 2.18 ◦C. A corresponding output voltage amounts to
Vout = 70.63 mV for this model. Furthermore, we eval-
uated the parametrized reduced order model (19) within
stationary simulations over the same parameter space. The
stationary full-size model with dimension n = 108,292
was reduced to dimension q2 = 4, that is only four
moments around h0 = 10 have been matched. Figure 5
compares the temperature difference across the TEG, as
obtained from the full and the reduced models. Figure 6
illustrates the relative error.

The maximum relative error between the full and the
reduced model amounts to 0.003% which indicates that
the parametrized reduced order model is an excellent



 

Figure 5: Comparison of temperature differences across
the TEG as obtained from the full and the reduced models.

 

Figure 6: Relative error in temperature difference across
the TEG between the full and the reduced models as a
function of film coefficient and ambient temperature.

substitute for the original large-scale model in parametric
simulation. Note that, the minimum error occurs around
h = 10 W/m2/K, as h0 = 10 was chosen for computing the
Krylov subspace (17), that is the four moments around
h0 = 10 were matched for the full and reduced models.
Furthermore, as Tamb is a part of the model input in (13)
and (19) and hence, is not taken into account during the
pMOR process, it does not impact the accuracy of the
reduced model (see Figure 6).

Finally, the computational time for a single stationary
solution of each parametrized full model is 9.1 s, which
makes 327.6 s for parameter study within a 6×6 parameter
space. To create a parametrized reduced order model
via constructing a single Krylov subspace (17) requires
8.142 s. However, when a parameterized reduced model

is available, its integration only takes 665 µs, which makes
0.0024 s for the complete parameter space. Hence, through
the pMOR we have achived a speed up of several orders
of magnitude. The CPU times are displayed in Table 3.

Table 3: CPU times for running the pMOR and conducting
the parameter study on a 6×6 parameter space (on Intel(R)
Core(TM) i5-7600 CPU @ 3.5 GHz, 32 GB RAM).

Reduction time (s) 8.142

Full model Reduced model
CPU time for 36 (108,292 ODEs) (4 ODEs)

static simulations (s) 327.6 0.0024

Furthermore, the small dimension of the parameterized
reduced order model enables its co-simulation with elec-
tronic circuit. For this purpose it can be imported into
a system-level simulator as a state-space model, which
provides the temperature difference across the TEG for
different environmental conditions (see Figure 7).

 

Figure 7: System-level model containing the parametric
reduced model and the electronic circuit. R1 represents the
internal resistance of the TEG and the DC/DC converter
provides a suitably voltage-level for the application.

5. Summary and Outlook
In this paper, we demonstrated the successful applica-

tion of parametric model order reduction (pMOR) for gen-
eration of a highly accurate and compact thermal model
of a human TEG, which can be employed for parametric
studies. It allows for efficient investigation of the impact of
environmental conditions (e.g. change of film coefficient
and ambient temperature) to the temperature distribution
across the TEG and can be employed within the system-
level simulation as well.



In the future, we aim for a more realistic tissue model,
which implements the heat generation by blood perfusion
within all tissue layers, as well as radiation and sweating.
This requires the development of novel, non-linear pMOR
methods. Furthermore, the parametrization of the TEG
geometry and the subsequent MOR is in our focus as well.
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