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Abstract The ‘Schur after MOR’ method has proved successful in obtaining sta-
ble reduced piezoelectric device models. Even though the method is already used
in industry, the stability preservation of ‘Schur after MOR’ is still mathemati-
cally unproven. In this work, we show that the involved quasi-Schur transforma-
tion indeed does efficiently re-stabilize the aforementioned reduced piezoelectric
energy harvester models. The transformation is only quasi-Schur as the unstable re-
duced systems require eigenspace projection and approximation to become Schur-
transformable. During the transformation, the negative eigenvalues are eliminated
from the reduced stiffness matrix and the system is stabilized. The mathematical
proof is validated by numerical experiments on two different piezoelectric energy
harvester devices. Furthermore, we compare ‘Schur after MOR’ to another recently
presented stabilization method: ‘MOR after Implicit Schur’. We show that the com-
putational effort is significantly reduced.

1 Introduction

Modeling and simulation-driven development has become state-of-the-art due to
the increasing capacity of today’s computers. However, even the power of modern
computers fails to always cope with the faster growing demands of the industry. To
overcome this issue, the methodology of model order reduction (MOR) has been
introduced. MOR significantly reduces the computational effort required for e.g.
system-level simulations by replacing the original high-dimensional model with
a lower dimensional but still accurate surrogate. Novel MOR methods are mostly
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interpolation-based and perform well when applied to single-physical-domain mod-
els [2, 5, 6]. However, for models involving coupled physical domains, people often
encounter difficulties in preserving the stable input/output behavior of the original
system, e.g. in [8] and [9].

In [8], the authors introduce three different approaches to solve stability issues
they have encountered when reducing piezoelectric models. However, except for
’MOR after Schur’ in [7], none of those methods have been mathematically proven
yet. In this contribution, we considered the ‘Schur after MOR’ approach, as it proved
effective in a number of industrial applications. We prove that the stable input/output
behavior of the original system can be re-established by the quasi-Schur transfor-
mation involved in ‘Schur after MOR‘. The transformation is only quasi-Schur as
an approximative pre-processing of the reduced model is required to make it Schur-
transformable.

Section 2 briefly introduces the piezoelectric energy harvester device. On its
model, we recapture the ‘Schur after MOR’ approach in Section 3 while introducing
some preliminaries on the way. Subsequently, we establish a link between the quasi-
Schur transformation performed during ‘Schur after MOR’ and the stabilization of
the reduced model. In Section 4, we present results of some numerical experiments.
We validate our proof on two different harvester devices and show that ‘Schur after
MOR’ is significantly more efficient than ‘MOR after Schur’ and its improved suc-
cessor ‘MOR after Implicit Schur’, introduced in [7]. Finally, we conclude and give
a brief outlook in Section 5.

2 Piezoelectric Energy Harvesters

Piezoelectric energy harvesters transform environmental mechanical vibration into
electrical energy using piezoelectric effect [4, 8]. They can supply power to sensors
deployed in harsh environmental conditions and to those, where batteries or wires
are undesirable, e.g. machine health monitoring. The mechanical part of piezoelec-
tric energy harvesters are oscillatory systems consisting of mass and spring ele-
ments, where piezoelectric patches, the electric part, are attached to the spring ele-
ments to convert mechanical stress into electrical voltage.

The mechanical part of the vibrational energy harvester is fabricated using
isotropic materials, e.g. steel or silicon. The piezoelectric patches are made of alu-
minum nitride (AIN) with an aluminum electrode on top and a platinum electrode
on the bottom. For optimal energy harvesting, the resonance frequency of the sys-
tem has to coincide with the excitation frequency. As the excitation frequency can
vary depending on environmental parameters like humidity or temperature, dual
frequency structures, e.g. in [12], are introduced that have a bandwidth of operating
range in between the resonant frequencies. Geometric dimensions vary from a few
millimeters for MEMS applications to several centimeters.

For the simulation of piezoelectric energy harvesters, the devices are usually
modeled using commercial finite elements software, e.g. ANSYS. This results in
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a linear coupled domain finite element model consisting of a mechanical and an
electrical part as the geometrical and material properties are fixed and the displace-
ment is minor.

The FEM models of two different implementations of a piezoelectric energy har-
vester are depict in Fig. 1, where center, north and south refers to the center of
gravity of mass elements and el1, el2 refers to the electrical (voltage) ports of the
system, which can be interfaced to electrical circuitries.

 

Fig. 1 Micro-structured piezoelectric energy harvester model adopted from [12] (left); tunable
piezoelectric energy harvester model adopted from [7] (right).

The mathematical representation of the mechanical part of the coupled domain
finite element model reads:

M11ẍ1 +D11ẋ1 +K11x1 = b1u, (1)

where M11,K11 ∈ Rn×n are the symmetric positive definite (s.p.d.) mass and stiff-
ness matrices, respectively. D11 = αM11 + βK11,α,β ∈ R is the damping matrix
and x1 is the vector of nodal displacements. The electrical part of the coupled do-
main finite element model reads:

K22x2 = b2u, (2)

with K22 ∈ Rk×k the electrical conductivity matrix, which is symmetric negative
definite (s.n.d.) and

||λmax(K22)|| � ||λmin(K11)|| (3)

holds for the respective eigenvalues. x2 is a vector of nodal electrical potentials. Both
physical domains are coupled via piezoelectric patches, which transform vibrational
stress into electric field. Thus, we have the piezoelectric coupling term K12 ∈Rn×k,
such that:
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The input function u corresponds to the displacement imposed to the harvester struc-
ture with input distribution vector b ∈Rn+k chosen accordingly. The total electrical
potential is gathered via the output vector c ∈ Rn+k within the output y.

3 Schur after MOR

This section briefly reassembles the ‘Schur after MOR’ procedure introduced in [8].
For a survey on general MOR methods for this class of models, please refer to [3].

’Schur after MOR’ method stabilizes unstable reduced order models:

Σr =

{
Mrẍr +Drẋr +Krxr = bru
y = cT

r xr
, (5)

obtained by projective MOR: VTΣV, where:

{Mr,Dr,Kr}= VT{M,D,K}V,

br = VTb and cT
r = cTV.

(6)

V ∈ R(n+k)×p, p� n+ k, is chosen as an orthonormal basis of the p-dimensional
second-order input Krylov subspace via the second order Arnoldi reduction (SOAR)
method [1, 11]:

Kp(−K−1M,−K−1D,−K−1b). (7)

The stabilization of the reduced model is achieved by performing a quasi-Schur
transformation on Σr, where Σr is approximated by a system of differential algebraic
equations (DAEs) before being Schur transformed. The approximation involves an
eigen-transformation Σ̃r = TTΣrT, where T is a sorted orthonormal eigenbasis of
the matrix Mr, such that for the entries of M̃r, m̃r,ii ≥ m̃r, j j holds for all i > j. In the
next step, we set m̃r,ii = 0 for all i≥ I with I ∈ [1, p], such that m̃r,(I−1)(I−1)� m̃r,II .
In this way, we obtain a reduced order DAE system, which can be Schur trans-
formed. We call the subspace spanned by all those eigenvectors corresponding to
these eigenvalues m̃r,ii, i≥ I quasi-algebraic.

In [11], a criteria for the stability of a second-order DAE is given.

Lemma 1 (Stability Criteria for Second-Order DAEs [11]). A second-order DAE
is stable, if D+DT � 0,M = MT � 0 and K = KT � 0.
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Proof. The proof is given in [11].

With this criteria, we can prove that the quasi-Schur transformation stabilizes the
reduced order system.

Theorem 1. The quasi-Schur transformation stabilizes the reduced model Σr.

Proof. As M11 is s.p.d., Mr has to be symmetric positive semi-definite as well.
Furthermore, Kr must have negative eigenvalues. Otherwise, Σr is stable according
to Lemma 1.

Since M and K can obviously be simultaneously diagonalized (e.g. with eigen-
basis of K−1M), the system domain can be represented as a direct sum of these
eigenspaces. Thus:

λ (Kr) = ∑
i

νiλ (K)i, ∑
i

νi = 1, (8)

holds for all eigenvalues of Kr. Now, given (3) and let P,N ⊂ {1, ...,n+ k} be the
set of indices corresponding to the positive and negative eigenvalues of K. (8) can
only be negative if ∑i∈P νi � ∑i∈N νi. That is to say, given the structure of Σ , the
subspaces of the reduced system corresponding to these negative eigenvalues has to
be dominated by the electric domain. Since M and K share the same decomposition,
λ (Mr) = ∑i∈P νiλ (M)i ≈ 0 must also hold.

Finally, when Σ̃r is Schur transformed, we have:

K̃s = K̃r,(1:I,1:I)− K̃r,(1:I,I:p)K̃−1
r,(I:p,I:p)K̃r,(I:p,1:I) (9)

which is s.p.d as K̃r,(1:I,1:I) is s.p.d. and K̃−1
r,(I:p,I:p) s.n.d.1 This makes the quasi-Schur

Transformed system stable according to Lemma 1.

Remark 1. In industrial software, the quasi-Schur Transformation introduced in [8]
is actually modified [10]. The index I is obtained by the eigen-transformation
K̂r=TT

KKrTK and then setting I such that K̂r,ii < 0 for all i ≥ I. This equivalent
criteria is easier to implement and more robust.

4 Numerical Experiments

For the validation of Theorem 1, the micro-structured energy harvester device from
[8] (see Fig. 1 left) as well as a novel frequency tunable piezoelectric energy har-
vester introduced in [7] (see Fig. 1 right) are considered. Both energy harvester
models are excited by a displacement input displ. To test the stability of the reduced
model, the displacements at further nodes (centre,north,south) are selected as out-
puts of the system.

1 K̃r,(1:I,1:I) is the submatrix consisting of the first I rows and columns of K̃r, and K̃r,(I:p,I:p) consists
of the the rows and columns I to p of K̃r.
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According to the observation from [7, 8], the reduced piezoelectric energy har-
vester model computed by conventional SOAR method shows unstable behavior at
the electrical ports el1 and el2. Therefore, quasi-Schur transformation has been per-
formed subsequently on these two reduced models to stabilize them. The accuracy
of the respective frequency responses are shown in Fig. 2. The plots also include the
reduced models obtained from ’MOR after Implicit Schur’ from [7] for comparison.

Fig. 2 Frequency response of the output voltage from ports el1 and el2 with displacement exci-
tation displ of the micro-structured model (top, 48351 DOF), tunable frequency harvester model
(bottom, 29392 DOF) and the respective reduced models (30 DOF2) from [8] and [7].

To validate Theorem 1, we compute the angle between the respective subspaces
TK,I and TM,I corresponding to the negative eigenvalues of Kr and the near 0 el-
ements in Mr. Various reduced models with different dimensions (from 6 up to
240) have been tested. We found the considered subspaces to coincide (see Fig. 4,
θ = 0◦), even when taking numeric errors into account. This validates Theorem 1
and justifies the assumption of a quasi-algebraic subspace. Furthermore, Fig. 3
shows reduced order models different dimensions (6,12,18,24 and 30 or 2 to 4 DOF
less after Schur transformation) compared to the full model. The deviation is negli-
gible for reduced models with more than 16 DOF3.

Table 1 shows the computation times of ‘Schur after MOR’ compared to ‘MOR
after Implicit Schur’ from [7] for the reduction of the tunable piezoelectric energy
harvester model with 24643 degrees of freedom. ‘Schur after MOR’ speeds up the

2 The reduced models obtained from ‘Schur after MOR’ actually have smaller DOF depending on
the size of the quasi-algebraic subspace. The DOF after Schur transformation can be found in 3
3 Expansion point for MOR is set to default (s0 = 0) as to obtain the smallest possible accurate
reduced model was not the main concern of this experiment, but to verify the identity of subspaces.
With the appropriate choise of expansion points, one can obtain smaller yet still accurate models.
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Fig. 3 Frequency response of the output voltage from ports el1 and el2 with displacement exci-
tation displ of the micro-structured model (top, 48351 DOF), tunable frequency harvester model
(bottom, 29392 DOF) and the respective reduced models of different DOF.

,

,

Fig. 4 Angle θ between the quasi-algebraic subspaces TM,I and TK,I.

Table 1 Computation time of ‘Schur after MOR’ vs. ‘MOR after implicit Schur’. (On Intel R©

CoreTM i5-7600 CPU@3.5GHz, 32GB RAM)

Reduced Order Schur after MOR MOR after implicit Schur

30 36.98s 52.85s
90 41.48s 57.24s
240 57.42s 71.11s
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computation of the reduced order model, as it avoids the implicit Schur transforma-
tion on the full model.

5 Conclusion and Outlook

In this work, we have given a mathematical proof for stability preservation of ‘Schur
after MOR’ method, which was initially suggested in [8]. We have shown that the
quasi-Schur transformation, when applied to reduced models of piezoelectric energy
harvesters obtained by projective MOR, stabilizes the models.

We have also shown its efficiency (∼30% decrease of computation time) com-
pared to ‘MOR after Implicit Schur’, which was initially suggested in [7].

In the next step, one can compare quasi-Schur transformation with conventional
stabilization method, e.g. by simply truncating the unstable part of the reduced sys-
tem. Finally, on can also consider comparing the performance of the whole ‘Schur
after MOR’ procedure to structure preserving MOR, which is a third suggested sta-
bility preserving MOR method in [8].
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