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Abstract The ’Schur after MOR’ method has proved successful in obtaining sta-
ble reduced piezoelectric device models. Even though the method is already used
in industry, the stability preservation of ’Schur after MOR’ is still mathemati-
cally unproven. In this work, we show that the involved quasi-Schur transforma-
tion indeed does efficiently re-stabilize the aforementioned reduced piezoelectric
energy harvester models. The transformation is only quasi-Schur as the unstable re-
duced systems require eigenspace projection and approximation to become Schur-
transformable. During the transformation, the negative eigenvalues are eliminated
from the reduced stiffness matrix and the system is stabilized. The mathematical
proof is validated by numerical experiments on two different piezoelectric energy
harvester devices. Furthermore, we compare ’Schur after MOR’ to another recently
presented stabilization method: ’MOR after Implicit Schur’. We show that the com-
putational effort is significantly reduced.

1 Introduction

Modeling and simulation-driven development has become state-of-the-art due to
the increasing capacity of today’s computers. However, even the power of modern
computers fails to always cope with the faster growing demands of the industry. To
overcome this issue, the methodology of model order reduction (MOR) has been
introduced. MOR significantly reduces the computational effort required for e.g.
system-level simulations by replacing the original high-dimensional model with
a lower dimensional but still accurate surrogate. Novel MOR methods are mostly
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interpolation-based and perform well when applied to single-physical-domain mod-
els [3–5]. However, for models involving coupled physical domains, we encounter
difficulties in preserving the stable input/output behavior of the original system [1].

In [1], the authors introduce three different approaches to solve stability issues
they have encountered when reducing piezoelectric models. However, except for
’MOR after Schur’ in [2], none of those methods have been mathematically proven
yet. In this contribution, we considered the ’Schur after MOR’ approach, as it proved
effective in a number of industrial applications. We prove that the stable input/output
behavior of the original system can be re-established by the quasi-Schur transfor-
mation involved in ’Schur after MOR‘. The transformation is only quasi-Schur as
an approximative pre-processing of the reduced model is required to make it Schur-
transformable.

Section 2 briefly introduces a generic model of a piezoelectric energy harvester
device. On this model, we recapture the ‘Schur after MOR’ approach in Section
3 while introducing some preliminaries on the way. Subsequently, we establish a
link between the quasi-Schur transformation performed during ‘Schur after MOR’
and the stabilization of the reduced model. In Section 4, we present results of some
numerical experiments. We validate our proof on two different harvester devices and
show that ‘Schur after MOR’ is significantly more efficient than ’MOR after Schur’
and its improved successor ’MOR after Implicit Schur’, introduced in [2]. Finally,
we conclude and give a brief outlook in Section 5.

2 Coupled Domain Finite Element Models of Piezoelectric
Energy Harvesters

Piezoelectric energy harvesters transform environmental mechanical vibration into
electrical energy using the piezoelectric effect [1, 6]. The mechanical part of the
coupled domain finite element model reads:

M11ẍ1 +D11ẋ1 +K11x1 = b1u, (1)

where M11,K11 ∈ Rn×n are the symmetric positive definite (s.p.d.) mass and stiff-
ness matrices, respectively. D11 = αM11 + βK11,α,β ∈ R is the damping matrix
and x1 is the vector of nodal displacements. The electrical part of the coupled do-
main finite element model reads:

K22x2 = b2u, (2)

with K22 ∈ Rk×k the electrical conductivity matrix, which is symmetric negative
definite (s.n.d.) and

||λmax(K22)|| � ||λmin(K11)|| (3)
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holds for the respective eigenvalues. x2 is a vector of nodal electrical potentials. Both
physical domains are coupled via piezoelectric patches, which transform vibrational
stress into electric field. Thus, we have the piezoelectric coupling term K12 ∈Rn×k,
such that:

Σ =



[
M11 0

0 0

]
︸ ︷︷ ︸

M

[
ẍ1
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]
=

[
b1

b2

]
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b

u

y = cT

[
x1

x2

] . (4)

The input function u corresponds to the displacement imposed to the harvester struc-
ture with input distribution vector b ∈Rn+k chosen accordingly. The total electrical
potential is gathered via the output vector c ∈ Rn+k within the output y.

3 Schur after MOR

This section briefly reassembles the ’Schur after MOR‘ procedure introduced in [1].
For a survey on general MOR methods for this class of models, please refer to [7].

’Schur after MOR’ method stabilizes unstable reduced order models:

Σr =

{
Mrẍr +Drẋr +Krxr = bru
y = cT

r xr
, (5)

obtained by projective MOR: VTΣV, where:

{Mr,Dr,Kr}= VT{M,D,K}V,

br = VTb and cT
r = cTV.

(6)

V ∈ R(n+k)×p, p� n+ k, is chosen as an orthonormal basis of the p-dimensional
second-order input Krylov subspace via the second order Arnoldi reduction (SOAR)
method [8, 9]:

Kp(−K−1M,−K−1D,−K−1b). (7)

The stabilization of the reduced model is achieved by performing a quasi-Schur
transformation on Σr, where Σr is approximated by a system of differential algebraic
equations (DAEs) before being Schur transformed. The approximation involves an
eigen-transformation Σ̃r = TTΣrT, where T is a sorted orthonormal eigenbasis of
the matrix Mr, such that for the entries of M̃r, m̃r,ii ≥ m̃r, j j holds for all i > j. In the
next step, we set m̃r,ii = 0 for all i≥ I with I ∈ [1, p], such that m̃r,(I−1)(I−1)� m̃r,II .
In this way, we obtain a reduced order DAE system, which can be Schur trans-
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formed. We call the subspace spanned by all those eigenvectors corresponding to
these eigenvalues m̃r,ii, i≥ I quasi-algebraic.

In [8], a criteria for the stability of a second-order DAE is given.

Lemma 1 (Stability Criteria for Second-Order DAEs [8]). A second-order DAE
is stable, if D+DT � 0,M = MT � 0 and K = KT � 0.

Proof. The proof is given in [8].

With this criteria, we can prove that the quasi-Schur transformation stabilizes the
reduced order system.

Theorem 1. The quasi-Schur transformation stabilizes the reduced model Σr.

Proof. As M11 is s.p.d., Mr has to be symmetric positive semi-definite as well.
Furthermore, Kr must have negative eigenvalues. Otherwise, Σr is stable according
to Lemma 1.

Since M and K can obviously be simultaneously diagonalized (e.g. with eigen-
basis of K−1M), the system domain can be represented as a direct sum of these
eigenspaces. Thus:

λ (Kr) = ∑
i

νiλ (K)i, ∑
i

νi = 1, (8)

holds for all eigenvalues of Kr. Now, given (3) and let P,N ⊂ {1, ...,n+ k} be the
set of indices corresponding to the positive and negative eigenvalues of K. (8) can
only be negative if ∑i∈P νi � ∑i∈N νi. That is to say, given the structure of Σ , the
subspaces of the reduced system corresponding to these negative eigenvalues has to
be dominated by the electric domain. Since M and K share the same decomposition,
λ (Mr) = ∑i∈P νiλ (M)i ≈ 0 must also hold.

Finally, when Σ̃r is Schur transformed, we have:

K̃s = K̃r,(1:I,1:I)− K̃r,(1:I,I:p)K̃−1
r,(I:p,I:p)K̃r,(I:p,1:I) (9)

which is s.p.d as K̃r,(1:I,1:I) is s.p.d. and K̃−1
r,(I:p,I:p) s.n.d.1 This makes the quasi-Schur

Transformed system stable according to Lemma 1.

Remark 1. In industrial software, the quasi-Schur Transformation introduced in [1]
is actually modified [10]. The index I is obtained by the eigen-transformation
K̂r=TT

KKrTK and then setting I such that K̂r,ii < 0 for all i ≥ I. This equivalent
criteria is easier to implement and more robust.

1 K̃r,(1:I,1:I) is the submatrix consisting of the first I rows and columns of K̃r, and K̃r,(I:p,I:p) consists
of the the rows and columns I to p of K̃r.
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4 Numerical Experiments

For the validation of Theorem. 1, the micro-structured energy harvester device
from [1] (see Fig. 1 left) as well as a novel frequency tunable piezoelectric en-
ergy harvester introduced in [2] (see Fig. 1 right) are considered. Both energy
harvester models are excited by a displacement input displ. Beam sections carry
piezoelectric patches that convert mechanical to electrical energy. Both models pro-
vide two electric ports named el1 and el2, which can be interfaced to electrical
circuitries. To test the stability of the reduced model, the displacements at further
nodes (centre,north,south) are selected as outputs of the system.

 

Fig. 1 micro-structured piezoelectric energy harvester model adopted from [1] (left); tunable
piezoelectric energy harvester model adopted from [2] (right).

According to the observation from [1, 2], the reduced piezoelectric energy har-
vester model computed by conventional SOAR method shows unstable behavior at
the electrical ports el1 and el2. Therefore, quasi-Schur transformation has been per-
formed subsequently on these two reduced models to stabilize them. The accuracy
of the respective frequency responses are shown in Fig. 2 and Fig. 3. The plots also
include the reduced models obtained from ’MOR after Implicit Schur’ from [2] for
comparison.

Fig. 2 Frequency response of the output voltage from ports el1 and el2 with displacement excita-
tion displ of full and reduced micro-structured model from [1].

To validate Theorem 1, Algorithm. 1 is implemented. Various reduced models
with different dimensions (6, 9, 30, 60, 120 and 240) have been tested. We found
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Fig. 3 Frequency response of the output voltage from ports el1 and el2 with displacement excita-
tion displ of full and reduced tunable frequency harvester model from [2].

the considered subspaces to coincide (see Fig. 4, θ = 0◦), even when taking numeric
errors into account. This validates Theorem 1 and justifies the assumption of a quasi-
algebraic subspace.

Algorithm 1
1: Read reduced system matrices.
2: Check stability:
3: if {Mr,Dr,Kr}= {Mr,Dr,Kr}T and Mr � 0,Kr � 0 and Dr +Dr

T � 0 then
4: reduced piezoelectric model is stable
5: break
6: else
7: reduced piezoelectric model is unstable
8: Negative eigenvector subspaces in TM,TK:
9: TM← eigenvector matrix of matrix Mr

10: TK← eigenvector matrix of matrix Kr
11: I← set the indices of negative eigenvalues in matrix K̃r.
12: TM,I← columns of TM indexed by I.
13: TK,I← columns of TK indexed by I.
14: if subspace angle(TM,I,TK,I) = 0 then
15: considered quasi-algebraic subspaces coincide.

,

,

Fig. 4 Angle θ between the quasi-algebraic subspaces TM,I and TK,I.
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Table 1 shows the computation times of ’Schur after MOR’ compared to ’MOR
after Implicit Schur’ from [2] for the reduction of the tunable piezoelectric energy
harvester model with 24643 degrees of freedom. ’Schur after MOR’ speeds up the
computation of the reduced order model, as it avoids the implicit Schur transforma-
tion on the full model.

Table 1 Computation time of ‘Schur after MOR’ vs. ‘MOR after implicit Schur’. (On Intel R©

CoreTM i5-7600 CPU@3.5GHz, 32GB RAM)

Reduced Order Schur after MOR MOR after implicit Schur

30 36.98s 52.85s
90 41.48s 57.24s
240 57.42s 71.11s

5 Conclusion and Outlook

In this work, we have given a mathematical proof for stability preservation of ’Schur
after MOR’ method, which was initially suggested in [1]. We have shown that the
quasi-Schur transformation, when applied to reduced models of piezoelectric energy
harvesters obtained by projective MOR, stabilizes the models.

We have also shown its efficiency (∼30% decrease of computation time) com-
pared to ‘MOR after Implicit Schur’, which was initially suggested in [2].

In the next step, one can compare quasi-Schur transformation with conventional
stabilization method, e.g. by simply truncating the unstable part of the reduced sys-
tem. Finally, on can also consider comparing the performance of the whole ’Schur
after MOR‘ procedure to structure preserving MOR, which is a third suggested sta-
bility preserving MOR method in [1].
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