

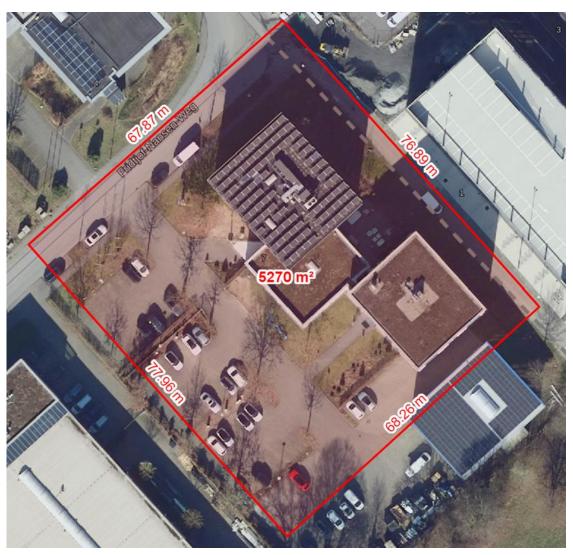
Studentischer Beitrag zu den Oldenburger 3D-Tagen:

Genauigkeitsuntersuchung zur Verknüpfung von terrestrischem Laserscanning und UAV-Photogrammetrie

GLIEDERUNG

- Zielsetzung
- Messgebiet
- Messinstrumente
 - UAV
 - Laserscanner
- Auswertung
 - UAV
 - TLS
- Punktwolkenprüfung
- Verknüpfungsmethoden
- Vergleich der Ergebnisse

ZIELSETZUNG



- Aufnahme des Messgebietes
 - terrestrisches Laserscanning
 - UAV-basierter Bildflug
- Verwendung identischer Passpunkte
- Verschiedene Verknüpfungsmethoden
- Vergleich der Restabweichungen zwischen UAV- und TLS-Punktwolke

Welches Verfahren ist geeignet, welche Ergebnisse werden erzielt?

MESSGEBIET

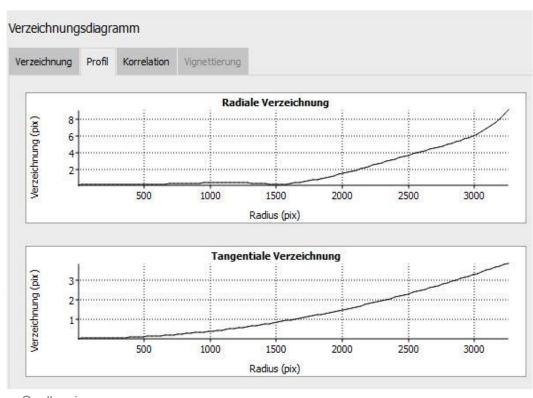
- Bürostandort des Ingenieurbüro Bertels in Münster
- 0,5 ha groß
- Dreigeschossiges Gebäude
- Parkflächen
- Kleine Vegetationsflächen mit Bäumen und Sträuchern
- Dachflächen für die TLS-Messung nicht zugänglich

Quelle: TIM-ONLINE 2024: o.S.

MESSINSTRUMENTE

Quelle: LEICA GEOSYSTEMS AG 2024a: o.S.

- Agisoft Metashape (Version 2.0.4)
- Verwendung der Bilder und Passpunktkoordinaten
- Automatische Bildmessung mit manueller Kontrolle
- Festlegung von Pass- und Kontrollpunkten
- Berechnung der Bündelblockausgleichung

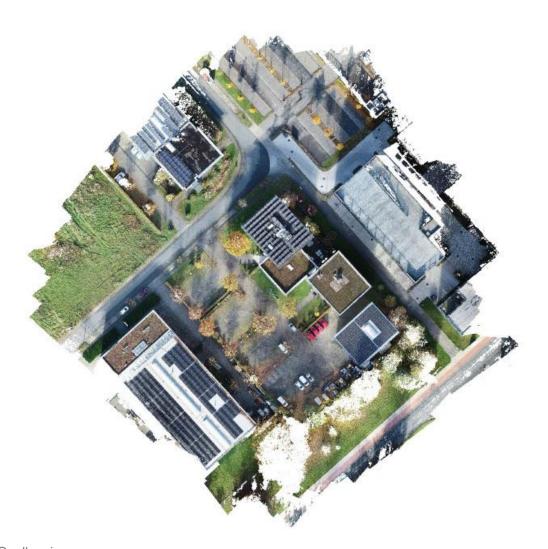

	Wert	Fehler	F	Cx	Су	B1	B2	К1	К2	кз	K4	P1	P2
F	3645.45	0.073	1.00	-0.01	0.04	-0.03	-0.00	-0.12	0.12	-0.10	0.08	-0.00	-0.02
CX	-0.153463	0.02		1.00	0.03	0.01	-0.04	0.02	-0.01	0.01	-0.01	0.80	0.02
Су	-7.18215	0.016			1.00	0.05	-0.01	-0.00	0.01	-0.01	0.01	0.01	0.72
B1	-0.506793	0.0045				1.00	-0.00	0.04	-0.04	0.03	-0.02	-0.01	0.02
B2	-0.499185	0.0044					1.00	-0.01	0.01	-0.01	0.01	-0.03	-0.04
K1	0.00680761	4.9e-05						1.00	-0.97	0.92	-0.87	0.01	-0.00
K2	-0.0545551	0.00024							1.00	-0.99	0.96	-0.01	0.00
кз	0.0993029	0.00047								1.00	-0.99	0.00	-0.00
K4	-0.059032	0.00031									1.00	-0.00	0.00
P1	0.000259843	1.7e-06										1.00	0.01
P2	-0.00129737	1.4e-06											1.00

Quelle: eigene

Ergebnis der Bündelblockausgleichung:

- 208 Tsd. Verknüpfungspunkte (dünne Punktwolke)
 - reprojection error von 0,435 Pixel
 - GSD (Bodenauflösung) von 0,856 cm/Pixel

Quelle: eigene


Ergebnis der Bündelblockausgleichung:

- distortion plot zeigt Verzeichnungseffekte
- Systematik erkennbar

 Radiale Verzeichnungskurve mit zweiten Nulldurchgang

Vorkorrektur der Bilddaten durch Hersteller

Ergebnis der Bündelblockausgleichung:

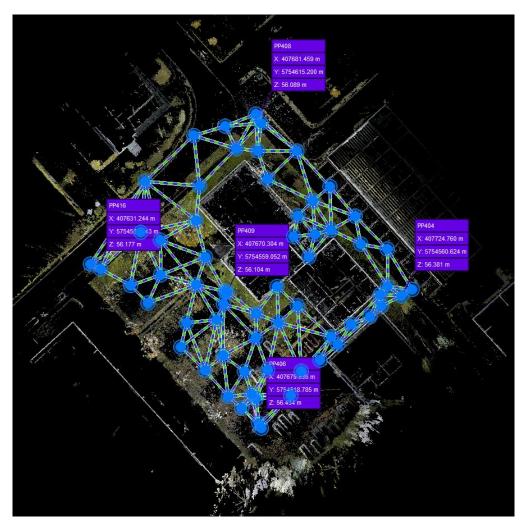
- Passpunktgenauigkeit 1,1 cm
- Kontrollpunktgenauigkeit 1,2 cm
- Dichte Punktwolke mit 118 Mio. Punkten

AUSWERTUNG - TLS

- Leica Cyclone Register 360
- Registrierung und Georeferenzierung der Punktwolke
- Automatische Zielzeichenerkennung

AUSWERTUNG - TLS

Quelle: eigene


Ergebnis der TLS-Auswertung:

- Registrierung primär über Zielzeichen
 - Verfeinerung durch Cloud-to-Cloud-Registrierung
- Falls zielzeichenbasierte Registrierung nicht möglich, nur Cloud-to-Cloud-Registrierung
 - Grobausrichtung manuell

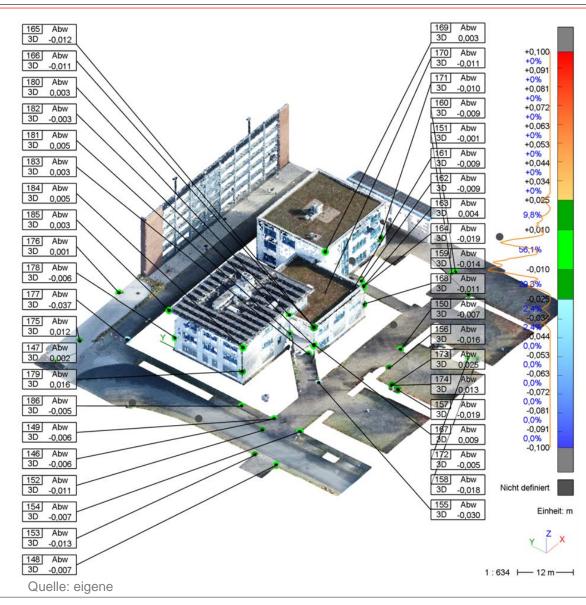
Georeferenzierung über die Passpunkte

AUSWERTUNG - TLS

Quelle: eigene

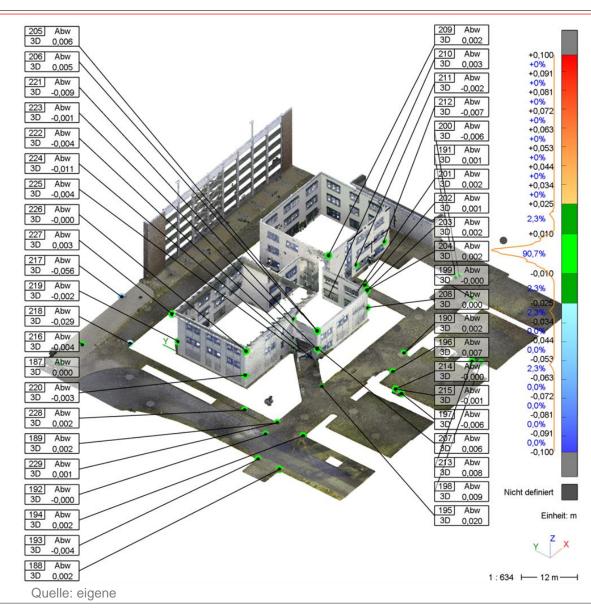
Ergebnis der TLS-Auswertung:

- 63 Standpunkte über 152 Registrierungen zu einer Gruppe verknüpft
- Fehler der Gruppe 3 mm
 - Cloud-to-Cloud-Fehler 3 mm
 - Fehler in den Zielmarken 3 mm
 - Überlappung von 68 Prozent


- Georeferenzierung über Passpunkte:
 - Mittlerer Fehler bei 7mm

- Überprüfung beider Punktwolken
 - Über Kontrollstrecken
 - Über Kontrollpunkte

- In Leica Cyclone 3DR:
 - Streckenmessfunktion
 - Point-vs-Cloud-Vergleich
 - Abstand Punkt lokale Ebene



Ergebnis UAV-Punktwolkenprüfung:

- Großteil der Abweichungen um -1 cm
- 56 % aller Abweichungen zwischen -1 cm und +1cm
- Ausreißer mit 3,7 cm Abweichung
- Mittelwert von -5 mm

Ergebnis TLS-Punktwolkenprüfung:

- 90,7 % der Abweichungen zwischen -1 cm
 und +1 cm
- Ausreißer von -2,9 cm
- Mittelwert von 0,1 mm

Ergebnis der Prüfung der Kontrollstrecken:

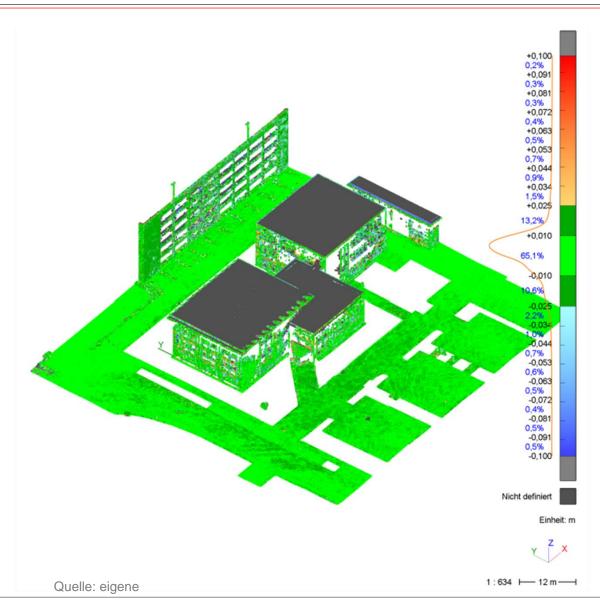
Mittlere Abweichung über alle Streckenmessungen:

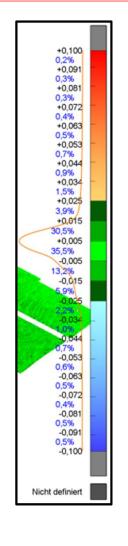
• UAV: 8,8 mm

• TLS: 5,8 mm

> TLS-Strecken weisen geringere Abweichungen als UAV-Strecken auf

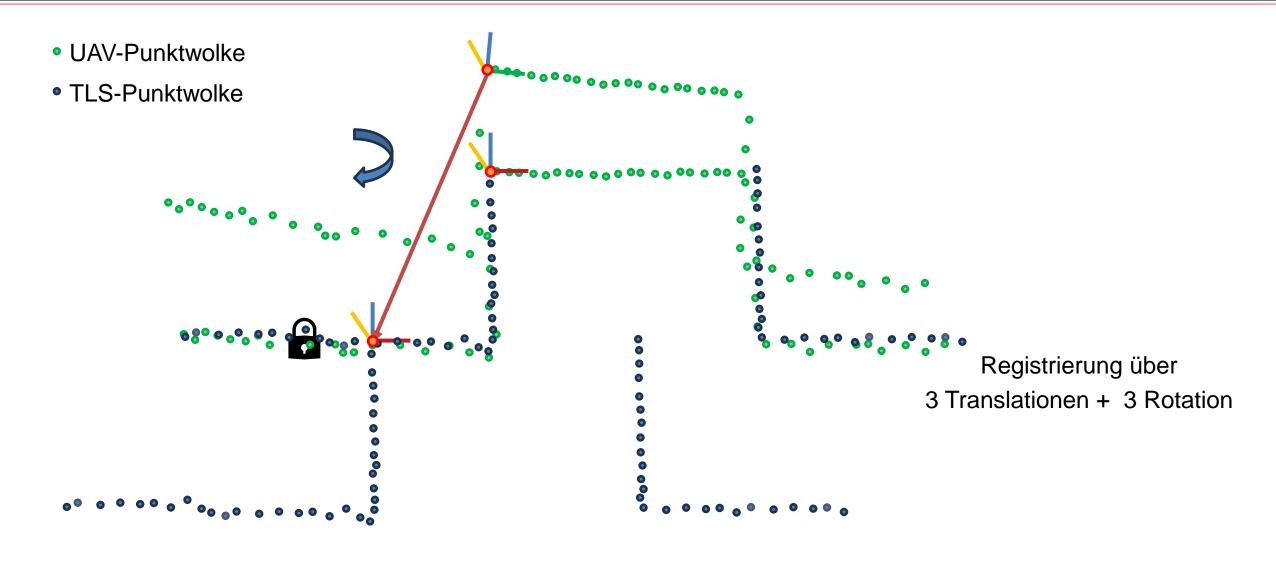
VERKNÜPFUNGSMETHODEN


Verknüpfung der UAV- und TLS-Punktwolke über:


Identische Passpunkte

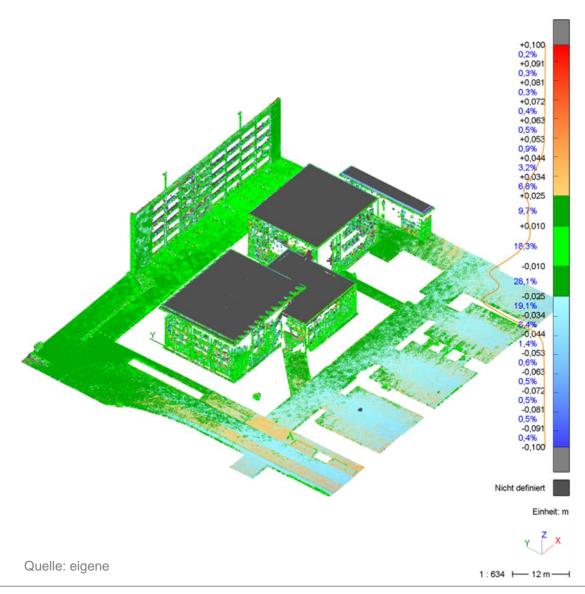
- Geometrische Registrierung
- N-Punkte-Registrierung
- Best-Fit-Registrierung
- Achsen-Registrierung

VERKNÜPFUNG ÜBER IDENTISCHE PASSPUNKTE

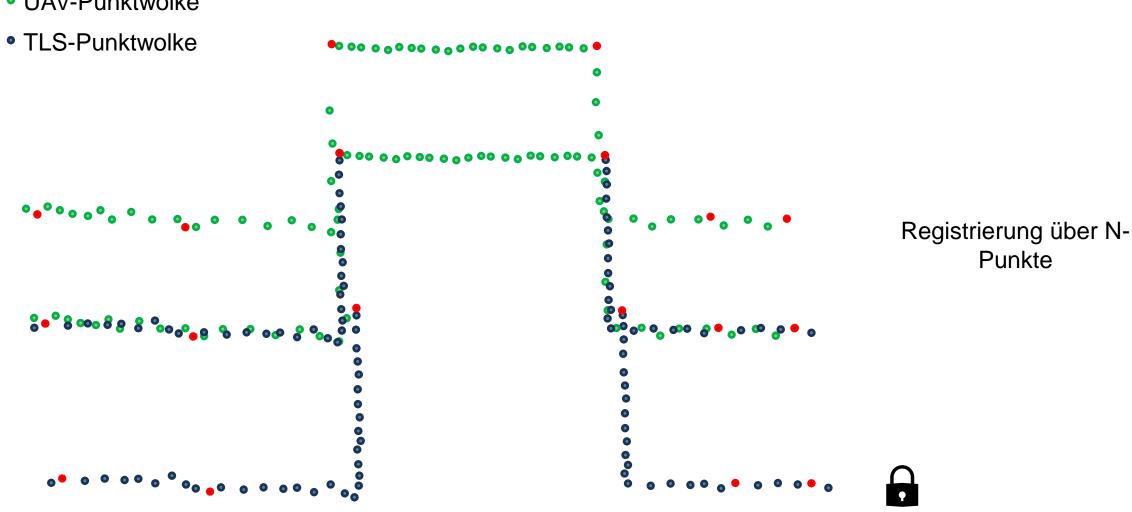


Ergebnisse Passpunkt-Verknüpfung:

- 65,1 Prozent der Werte zwischen-1 cm und + 1cm
- 35 Prozent zwischen -5 mm und+5 mm
- 30 Prozent zwischen +5 mm und+15 mm
- Scheitelpunkt ca. bei +5 mm

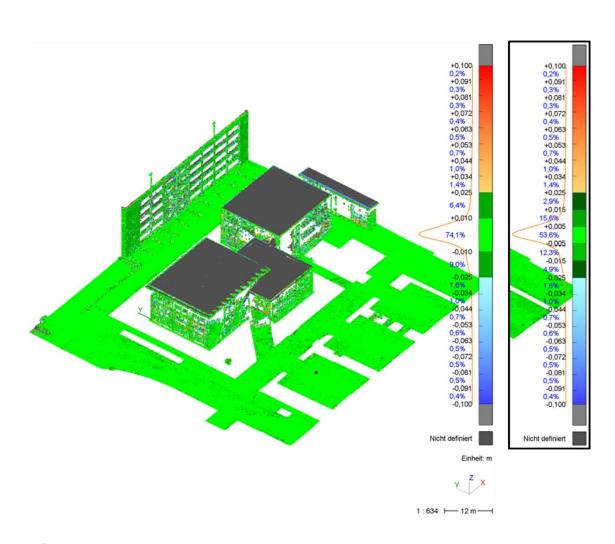

GEOMETRISCHE REGISTRIERUNG

GEOMETRISCHE REGISTRIERUNG


Ergebnisse geometrische Registrierung:

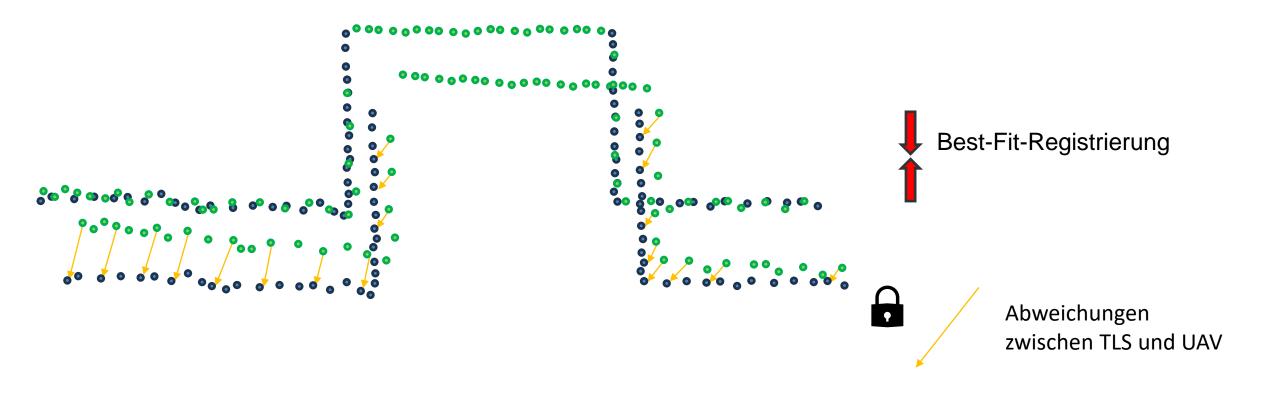
- Großflächige Abweichungen erkennbar
 (-2,5- -4 cm Parkplatz)
- Keine Glockenform
- Zwei Scheitelpunkte

N-PUNKTE-REGISTRIERUNG



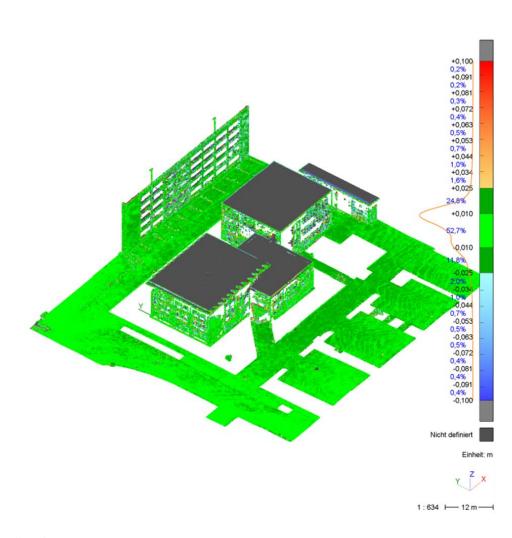
UAV-Punktwolke

N-PUNKTE-REGISTRIERUNG


Ergebnisse N-Punkte-Registrierung:

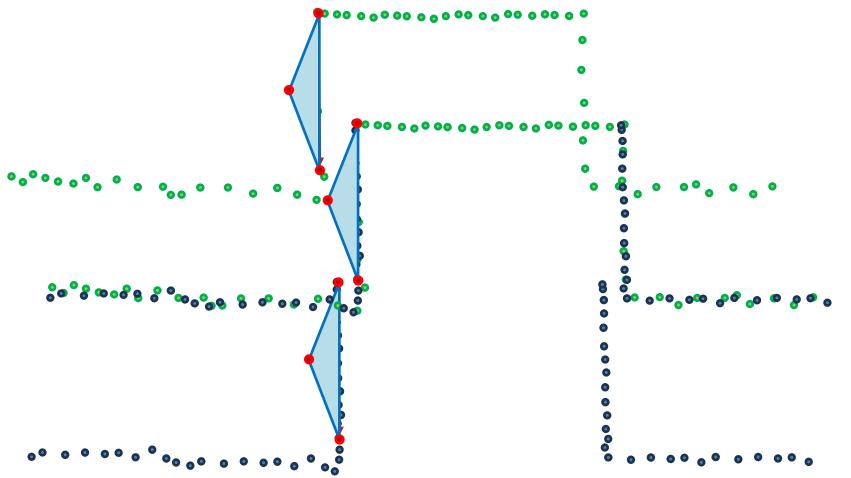
- Großflächig geringe Restabweichungen
- 74,1 Prozent zwischen -1 cm und+1 cm
- 53,6 Prozent zwischen -5 mm und+5 mm
- Scheitelpunkt bei +/- 0 mm

BEST-FIT-REGISTRIERUNG



- UAV-Punktwolke
- TLS-Punktwolke

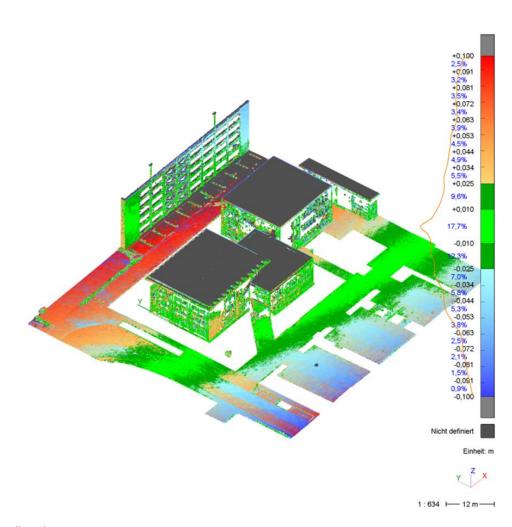
BEST-FIT-REGISTRIERUNG


Ergebnisse Best-Fit-Registrierung:

- großflächig Abweichungen zwischen
 -1,5 cm und +2 cm
- 52,7 Prozent der Abweichungen
 zwischen -1 cm und +1 cm
- Scheitelpunkt liegt bei +1 cm
- Große Streuung um den Scheitelpunkt

ACHSEN-REGISTRIERUNG

- UAV-Punktwolke
- TLS-Punktwolke



Achsen-Registrierung

ACHSEN-REGISTRIERUNG

Ergebnisse Achsen-Registrierung:

- Großflächig sehr hohe Abweichungen
- Extrem starke Streuung der Werte
- 60,4 Prozent der Abweichungen
 außerhalb des Bereiches von -2 cm bis
 +2 cm
- Verschwenkung ist zu erkennen
- Im Definitionsbereich geringste
 Abweichungen

VERGLEICH DER REGISTRIERUNGS-ERGEBNISSE

	-1 cm	-1 cm	+1 cm	+/-2,5 cm	
	bis	bis	bis	bis	
	+1 cm	-2,5 cm	+2,5 cm	+/-10 cm	
Identische Passpunkte	65,1	10,6	13,2	11,1	
Geometrische Registrierung	18,3	28,1	9,7	43,9	
N-Punkte-Registrierung	74,1	9,0	6,4	10,5	
Best-Fit-Registrierung	52,7	11,8	24,8	10,7	
Achsen-Registrierung	17,7	12,3	9,6	60,4	

FAZIT

- Geometrische und Achsen-Registrierung für diesen Anwendungsfall ungeeignet
- Best-Fit-Registrierung benötigt mehr Überlappung in allen Dimensionen
- Verknüpfung über identische Passpunkte gut geeignet, allerdings aufwendig, zeitintensiv und fehleranfällig
- N-Punkte-Registrierung sehr gut geeignet, allerdings Ergebnisse stark abhängig vom Anwender

Nicht jede Methode für alle Anwendungen geeignet, Verknüpfungsmethode schon im Messkonzept berücksichtigen!

Vielen Dank für Ihre Aufmerksamkeit

JADE-HS.DE

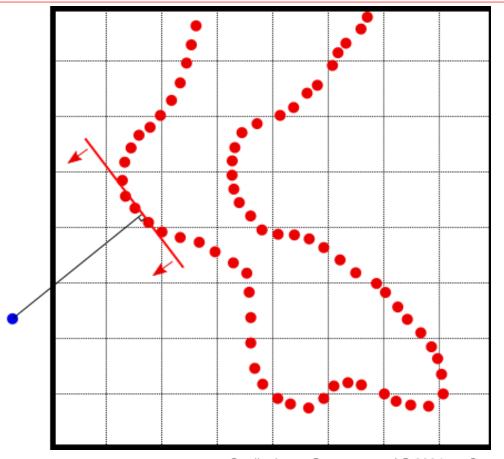
QUELLEN

AGISOFT LLC (2024): Agisoft Metashape User Manual. https://www.agisoft.com/downloads/user-manuals/ (Abgerufen am 27.01.2024).

DJI (2024): Technische Daten - Phantom 4 RTK - DJI Enterprise. https://enterprise.dji.com/de/phantom-4-rtk/specs (Abgerufen am 27.01.2024).

LEICA GEOSYSTEMS AG (2024a): Leica RTC360 3D-Laserscanner. https://leica-geosystems.com/de-DE/products/laser-scanners/scanners/leica-rtc360 (Abgerufen am 27.01.2024).

LEICA GEOSYSTEMS AG (2024b): Cyclone REGISTER 360 - documentation. https://rcdocs.leica-geosystems.com/cyclone-register-360/latest/?l=en (Abgerufen am 27.01.2024).


LEICA GEOSYSTEMS AG (2024c): Cyclone 3DR – Help Center. https://cyclone3dr.leica-geosystems.com/help/2022.1/HelpCenter.html (Abgerufen am 27.01.2024).

TIM-ONLINE (2024): Tim-online. https://www.tim-online.nrw.de/tim-online2/ (Abgerufen am 27.01.2024).

CLOUD-VS-CLOUD-VERGLEICH /CLOUD-VS-POINT-VERGLEICH

- Reference point cloud
- Point to project
- Projection
- Best plane

Quelle: LEICA GEOSYSTEMS AG 2024c: o.S.

- lokale Ebene auf Punktwolke
- zu vergleichender Punkt wird auf Ebene projiziert
- Abstand ergibt sich aus Abstand des Einzelpunktes zum Lotfußpunkt des Einzelpunktes auf der Ebene

MESSINSTRUMENTE - UAV

DJI Phantom 4 RTK

- 1,4 kg Gewicht
- Entspricht der offenen Kategorie
 - Unterkategorie A3
 - EU-Kompetenznachweis ("kleiner Drohnenführerschein A1/A3") nötig
- Maximal 30 min Flugzeit
- 20 Megapixel Kamera
- Gimbal zur Stabilisierung der Kamera
 - Kamera kippbar von -90° bis +30°

Quelle: eigene

MESSINSTRUMENTE - UAV

DJI Phantom 4 RTK

- Bilder werden im JPEG-Format gespeichert
- Fernbedienung mit integrierter
 Flugplanungssoftware
- GNSS-Empfänger (RTK)
 - Höhengenauigkeit 1,5 cm
 - Lagegenauigkeit 1 cm

MESSINSTRUMENTE - LASERSCANNER

Quelle: LEICA GEOSYSTEMS AG 2024a: o.S.

Leica RTC 360

- 5,3 kg Gewicht
- Messdauer von 4h (zwei Akkus)
- Messbereich: 360° horizontal, 300° vertikal
- Reichweite bis 130m
- Auflösung von 3, 6 oder 9 mm auf 10 m
- 3D-Punktgenauigkeit bei 2,9 mm auf 20 m
- 3 Kameras mit 36 Megapixel
- Bedienung über die Cyclone FIELD 360 auf einem Tablet